mirror of
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
synced 2025-07-01 05:50:32 +00:00
Update NLP Pipeline
This commit is contained in:
76
spacy-nlp
Executable file
76
spacy-nlp
Executable file
@ -0,0 +1,76 @@
|
||||
#!/usr/bin/env python3.5
|
||||
# coding=utf-8
|
||||
|
||||
from argparse import ArgumentParser
|
||||
from xml.sax.saxutils import escape
|
||||
import chardet
|
||||
import spacy
|
||||
import textwrap
|
||||
|
||||
|
||||
SPACY_MODELS = {'de': 'de_core_news_sm',
|
||||
'el': 'el_core_news_sm',
|
||||
'en': 'en_core_web_sm',
|
||||
'es': 'es_core_news_sm',
|
||||
'fr': 'fr_core_news_sm',
|
||||
'it': 'it_core_news_sm',
|
||||
'nl': 'nl_core_news_sm',
|
||||
'pt': 'pt_core_news_sm'}
|
||||
|
||||
|
||||
# Parse the given arguments
|
||||
parser = ArgumentParser(description=('Tag a text file with spaCy and save it '
|
||||
'as a verticalized text file.'))
|
||||
parser.add_argument('i', metavar='txt-sourcefile')
|
||||
parser.add_argument('o', metavar='vrt-destfile')
|
||||
parser.add_argument('-l', '--language', choices=SPACY_MODELS.keys(),
|
||||
required=True)
|
||||
parser.add_argument('--check-encoding', action='store_true')
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
# If requested: Check the encoding of the text contents from the input file
|
||||
# Else: Use utf-8
|
||||
if args.check_encoding:
|
||||
with open(args.i, "rb") as input_file:
|
||||
bytes = input_file.read()
|
||||
encoding = chardet.detect(bytes)['encoding']
|
||||
else:
|
||||
encoding = 'utf-8'
|
||||
|
||||
|
||||
# Load the text contents from the input file
|
||||
with open(args.i, encoding=encoding) as input_file:
|
||||
text = input_file.read()
|
||||
# spaCys NLP is limited to strings with maximum 1 million characters at
|
||||
# once. So we split it into suitable chunks.
|
||||
text_chunks = textwrap.wrap(text, 1000000, break_long_words=False)
|
||||
# the text variable potentially occupies a lot of system memory and is no
|
||||
# longer needed...
|
||||
del text
|
||||
|
||||
|
||||
# Setup the spaCy toolkit by loading the chosen language model
|
||||
nlp = spacy.load(SPACY_MODELS[args.language])
|
||||
|
||||
|
||||
# Create the output file in verticalized text format
|
||||
# See: http://cwb.sourceforge.net/files/CWB_Encoding_Tutorial/node3.html
|
||||
output_file = open(args.o, 'w+')
|
||||
output_file.write('<?xml version="1.0" encoding="UTF-8"?>\n<corpus>\n<text>\n')
|
||||
for text_chunk in text_chunks:
|
||||
doc = nlp(text_chunk)
|
||||
for sent in doc.sents:
|
||||
output_file.write('<s>\n')
|
||||
for token in sent:
|
||||
# Skip whitespace tokens
|
||||
if token.text.isspace():
|
||||
continue
|
||||
output_file.write('{}'.format(escape(token.text))
|
||||
+ '\t{}'.format(escape(token.lemma_))
|
||||
+ '\t{}'.format(token.pos_)
|
||||
+ '\t{}'.format(token.tag_)
|
||||
+ '\t{}\n'.format(token.ent_type_ or 'NULL'))
|
||||
output_file.write('</s>\n')
|
||||
output_file.write('</text>\n</corpus>')
|
||||
output_file.close()
|
Reference in New Issue
Block a user