mirror of
				https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
				synced 2025-10-31 06:42:45 +00:00 
			
		
		
		
	Update NLP Pipeline
This commit is contained in:
		
							
								
								
									
										32
									
								
								Dockerfile
									
									
									
									
									
								
							
							
						
						
									
										32
									
								
								Dockerfile
									
									
									
									
									
								
							| @@ -11,8 +11,10 @@ ENV LANG=C.UTF-8 | ||||
| # Install prerequisites | ||||
| RUN apt-get update \ | ||||
|  && apt-get install -y --no-install-recommends \ | ||||
|       build-essential \ | ||||
|       python2.7 \ | ||||
|       python3.5 \ | ||||
|       python3-dev \ | ||||
|       python3-pip \ | ||||
|       zip \ | ||||
|  && rm -rf /var/lib/apt/lists/* \ | ||||
| @@ -31,30 +33,24 @@ RUN tar -xzf "pyflow-${PYFLOW_VERSION}.tar.gz" \ | ||||
|       "pyflow-${PYFLOW_VERSION}" \ | ||||
|       "pyflow-${PYFLOW_VERSION}.tar.gz" | ||||
|  | ||||
| ENV SPACY_MODEL_DE=de_core_news_sm \ | ||||
|     SPACY_MODEL_EL=el_core_news_sm \ | ||||
|     SPACY_MODEL_EN=en_core_web_sm \ | ||||
|     SPACY_MODEL_ES=es_core_news_sm \ | ||||
|     SPACY_MODEL_FR=fr_core_news_sm \ | ||||
|     SPACY_MODEL_IT=it_core_news_sm \ | ||||
|     SPACY_MODEL_NL=nl_core_news_sm \ | ||||
|     SPACY_MODEL_PT=pt_core_news_sm \ | ||||
|     SPACY_VERSION=2.2.0 | ||||
| ENV SPACY_VERSION=2.2.4 | ||||
| ENV SPACY_MODELS_VERSION=2.2.5 | ||||
|  | ||||
| RUN pip3 install \ | ||||
|       "spacy==${SPACY_VERSION}" \ | ||||
|  && python3 -m spacy download "${SPACY_MODEL_DE}-${SPACY_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "${SPACY_MODEL_EL}-${SPACY_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "${SPACY_MODEL_EN}-${SPACY_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "${SPACY_MODEL_ES}-${SPACY_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "${SPACY_MODEL_FR}-${SPACY_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "${SPACY_MODEL_IT}-${SPACY_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "${SPACY_MODEL_NL}-${SPACY_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "${SPACY_MODEL_PT}-${SPACY_VERSION}" --direct | ||||
|  && python3 -m spacy download "de_core_news_sm-${SPACY_MODELS_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "el_core_news_sm-${SPACY_MODELS_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "en_core_web_sm-${SPACY_MODELS_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "es_core_news_sm-${SPACY_MODELS_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "fr_core_news_sm-${SPACY_MODELS_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "it_core_news_sm-${SPACY_MODELS_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "nl_core_news_sm-${SPACY_MODELS_VERSION}" --direct \ | ||||
|  && python3 -m spacy download "pt_core_news_sm-${SPACY_MODELS_VERSION}" --direct | ||||
|  | ||||
|  | ||||
| # Install NLP pipeline | ||||
| COPY nlp /usr/local/bin | ||||
| COPY spacy_nlp /usr/local/bin | ||||
| COPY spacy-nlp /usr/local/bin | ||||
|  | ||||
|  | ||||
| ENTRYPOINT ["nlp"] | ||||
|   | ||||
							
								
								
									
										198
									
								
								nlp
									
									
									
									
									
								
							
							
						
						
									
										198
									
								
								nlp
									
									
									
									
									
								
							| @@ -9,147 +9,131 @@ Author: Patrick Jentsch <p.jentsch@uni-bielefeld.de> | ||||
| """ | ||||
|  | ||||
|  | ||||
| import argparse | ||||
| from argparse import ArgumentParser | ||||
| from pyflow import WorkflowRunner | ||||
| import multiprocessing | ||||
| import os | ||||
| import sys | ||||
| from pyflow import WorkflowRunner | ||||
|  | ||||
|  | ||||
| def parse_arguments(): | ||||
|     parser = argparse.ArgumentParser( | ||||
|         description=('Performs NLP of documents utilizing spaCy. The results ' | ||||
|                      'are served as verticalized text files.') | ||||
|     ) | ||||
|     parser.add_argument('-i', dest='input_dir', required=True) | ||||
|     parser.add_argument( | ||||
|         '-l', | ||||
|         choices=['de', 'el', 'en', 'es', 'fr', 'it', 'nl', 'pt'], | ||||
|         dest='lang', | ||||
|         required=True | ||||
|     ) | ||||
|     parser.add_argument('-o', dest='output_dir', required=True) | ||||
|     parser.add_argument('--nCores', | ||||
| SPACY_MODELS = {'de': 'de_core_news_sm', | ||||
|                 'el': 'el_core_news_sm', | ||||
|                 'en': 'en_core_web_sm', | ||||
|                 'es': 'es_core_news_sm', | ||||
|                 'fr': 'fr_core_news_sm', | ||||
|                 'it': 'it_core_news_sm', | ||||
|                 'nl': 'nl_core_news_sm', | ||||
|                 'pt': 'pt_core_news_sm'} | ||||
|  | ||||
|  | ||||
| def parse_args(): | ||||
|     parser = ArgumentParser(description='NLP Pipeline utilizing spaCy.') | ||||
|     parser.add_argument('i') | ||||
|     parser.add_argument('o') | ||||
|     parser.add_argument('-l', '--language', choices=SPACY_MODELS.keys(), | ||||
|                         required=True) | ||||
|     parser.add_argument('--n-cores', | ||||
|                         default=min(4, multiprocessing.cpu_count()), | ||||
|                         dest='n_cores', | ||||
|                         help='total number of cores available', | ||||
|                         required=False, | ||||
|                         type=int) | ||||
|     parser.add_argument('--zip', | ||||
|                         default='vrt-results', | ||||
|                         dest='zip', | ||||
|                         type=str, | ||||
|                         help='''package result files in zip bundles takes a | ||||
|                                 string as a filename as an optional paramteer''', | ||||
|                         required=False) | ||||
|     parser.add_argument('--check-encoding', | ||||
|                         action='store_true', | ||||
|                         default=False, | ||||
|                         dest="check_encoding", | ||||
|                         help='''if used the nlp process will know hat the | ||||
|                                 encoding of the input files is unkown and | ||||
|                                 thus != utf-8. The process will try to determine | ||||
|                                 the encoding of the input files and use this. | ||||
|                                 encoding.''' | ||||
|                         ) | ||||
|                         help='total number of cores available', type=int) | ||||
|     parser.add_argument('--check-encoding', action='store_true') | ||||
|     parser.add_argument('--log-dir') | ||||
|     parser.add_argument('--zip') | ||||
|     return parser.parse_args() | ||||
|  | ||||
|  | ||||
| class NLPWorkflow(WorkflowRunner): | ||||
|     def __init__(self, args): | ||||
|         self.jobs = analyze_jobs(args.input_dir, args.output_dir) | ||||
|         self.lang = args.lang | ||||
|         self.n_cores = args.n_cores | ||||
|         self.output_dir = args.output_dir | ||||
|         self.zip = args.zip | ||||
|         self.check_encoding = args.check_encoding | ||||
| class NLPPipelineJob: | ||||
|     def __init__(self, file, output_dir): | ||||
|         self.file = file | ||||
|         self.name = os.path.basename(file).rsplit('.', 1)[0] | ||||
|         self.output_dir = output_dir | ||||
|  | ||||
|  | ||||
| class NLPPipeline(WorkflowRunner): | ||||
|     def __init__(self, check_encoding, jobs, lang, n_cores, output_dir, zip): | ||||
|         self.check_encoding = check_encoding | ||||
|         self.jobs = jobs | ||||
|         self.lang = lang | ||||
|         self.n_cores = n_cores | ||||
|         self.output_dir = output_dir | ||||
|         self.zip = zip | ||||
|  | ||||
|     def workflow(self): | ||||
|         if len(self.jobs) == 0: | ||||
|         if not self.jobs: | ||||
|             return | ||||
|  | ||||
|         ''' | ||||
|         ' ################################################## | ||||
|         ' # Create output directories                      # | ||||
|         ' # mkdir_jobs                                     # | ||||
|         ' ################################################## | ||||
|         ''' | ||||
|         create_output_directories_jobs = [] | ||||
|         for index, job in enumerate(self.jobs): | ||||
|             cmd = 'mkdir -p "{}"'.format(job['output_dir']) | ||||
|             create_output_directories_jobs.append( | ||||
|                 self.addTask( | ||||
|                     command=cmd, | ||||
|                     label='create_output_directories_job_-_{}'.format(index) | ||||
|                 ) | ||||
|             ) | ||||
|         mkdir_jobs = [] | ||||
|         for i, job in enumerate(self.jobs): | ||||
|             cmd = 'mkdir' | ||||
|             cmd += ' -p' | ||||
|             cmd += ' "{}"'.format(job.output_dir) | ||||
|             lbl = 'mkdir_job_-_{}'.format(i) | ||||
|             mkdir_jobs.append(self.addTask(command=cmd, label=lbl)) | ||||
|  | ||||
|         ''' | ||||
|         ' ################################################## | ||||
|         ' # Natural language processing                    # | ||||
|         ' # spacy_nlp_jobs                                 # | ||||
|         ' ################################################## | ||||
|         ''' | ||||
|         nlp_jobs = [] | ||||
|         nlp_job_n_cores = min( | ||||
|             self.n_cores, | ||||
|             max(1, int(self.n_cores / len(self.jobs))) | ||||
|         ) | ||||
|         for index, job in enumerate(self.jobs): | ||||
|             cmd = 'spacy_nlp -l "{}" "{}" "{}" {}'.format( | ||||
|                 self.lang, | ||||
|                 job['path'], | ||||
|                 os.path.join(job['output_dir'], job['name'] + '.vrt'), | ||||
|                 "--check-encoding" if self.check_encoding else "" | ||||
|             ) | ||||
|             nlp_jobs.append( | ||||
|                 self.addTask( | ||||
|                     command=cmd, | ||||
|                     dependencies='create_output_directories_job_-_{}'.format( | ||||
|                         index | ||||
|                     ), | ||||
|                     label='nlp_job_-_{}'.format(index), | ||||
|                     nCores=nlp_job_n_cores | ||||
|                 ) | ||||
|             ) | ||||
|         spacy_nlp_jobs = [] | ||||
|         n_cores = min(self.n_cores, max(1, int(self.n_cores / len(self.jobs)))) | ||||
|         for i, job in enumerate(self.jobs): | ||||
|             output_file = os.path.join(job.output_dir, | ||||
|                                        '{}.vrt'.format(job.name)) | ||||
|             cmd = 'spacy-nlp "{}" "{}"'.format(job.file, output_file) | ||||
|             cmd += ' -l "{}"'.format(self.lang) | ||||
|             cmd += ' --check-encoding' if self.check_encoding else '' | ||||
|             deps = 'mkdir_job_-_{}'.format(i) | ||||
|             lbl = 'spacy_nlp_job_-_{}'.format(i) | ||||
|             spacy_nlp_jobs.append(self.addTask(command=cmd, dependencies=deps, | ||||
|                                                label=lbl, nCores=n_cores)) | ||||
|  | ||||
|         if zip: | ||||
|             vrt_zip_jobs = [] | ||||
|             vrt_zip_job_dependencies = nlp_jobs | ||||
|             cmd = 'cd "%s" && zip -m "%s"-nlp.zip */*.vrt -x "pyflow.data*" && cd -' % ( | ||||
|                 self.output_dir, | ||||
|                 self.zip | ||||
|             ) | ||||
|             vrt_zip_jobs.append( | ||||
|                 self.addTask( | ||||
|                     command=cmd, | ||||
|                     dependencies=vrt_zip_job_dependencies, | ||||
|                     label='vrt_zip_job' | ||||
|                 ) | ||||
|             ) | ||||
|         ''' | ||||
|         ' ################################################## | ||||
|         ' # zip_jobs                                       # | ||||
|         ' ################################################## | ||||
|         ''' | ||||
|         zip_jobs = [] | ||||
|         if self.zip is not None: | ||||
|             cmd = 'cd "{}"'.format(self.output_dir) | ||||
|             cmd += ' && ' | ||||
|             cmd += 'zip' | ||||
|             cmd += ' -m' | ||||
|             cmd += ' -r' | ||||
|             cmd += ' "{}_-_vrt" .'.format(self.zip) | ||||
|             cmd += ' -x "pyflow.data*"' | ||||
|             cmd += ' -i "*.vrt"' | ||||
|             cmd += ' && ' | ||||
|             cmd += 'cd -' | ||||
|             deps = spacy_nlp_jobs | ||||
|             lbl = 'zip_job' | ||||
|             zip_jobs.append(self.addTask(command=cmd, dependencies=deps, | ||||
|                                          label=lbl)) | ||||
|  | ||||
|  | ||||
| def analyze_jobs(input_dir, output_dir): | ||||
| def collect_jobs(input_dir, output_dir): | ||||
|     jobs = [] | ||||
|  | ||||
|     for file in os.listdir(input_dir): | ||||
|         if os.path.isdir(os.path.join(input_dir, file)): | ||||
|             jobs += analyze_jobs(os.path.join(input_dir, file), | ||||
|             jobs += collect_jobs(os.path.join(input_dir, file), | ||||
|                                  os.path.join(output_dir, file)) | ||||
|         elif file.endswith('.txt'): | ||||
|             jobs.append({'filename': file, | ||||
|                          'name': file.rsplit('.', 1)[0], | ||||
|                          'output_dir': os.path.join(output_dir, file), | ||||
|                          'path': os.path.join(input_dir, file)}) | ||||
|  | ||||
|             jobs.append(NLPPipelineJob(os.path.join(input_dir, file), | ||||
|                                        os.path.join(output_dir, file))) | ||||
|     return jobs | ||||
|  | ||||
|  | ||||
| def main(): | ||||
|     args = parse_arguments() | ||||
|  | ||||
|     wflow = NLPWorkflow(args) | ||||
|  | ||||
|     retval = wflow.run(dataDirRoot=args.output_dir, nCores=args.n_cores) | ||||
|  | ||||
|     args = parse_args() | ||||
|     jobs = collect_jobs(args.i, args.o) | ||||
|     nlp_pipeline = NLPPipeline(args.check_encoding, jobs, args.language, | ||||
|                                args.n_cores, args.o, args.zip) | ||||
|     retval = nlp_pipeline.run(dataDirRoot=(args.log_dir or args.o), | ||||
|                               nCores=args.n_cores) | ||||
|     sys.exit(retval) | ||||
|  | ||||
|  | ||||
|   | ||||
							
								
								
									
										76
									
								
								spacy-nlp
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										76
									
								
								spacy-nlp
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,76 @@ | ||||
| #!/usr/bin/env python3.5 | ||||
| # coding=utf-8 | ||||
|  | ||||
| from argparse import ArgumentParser | ||||
| from xml.sax.saxutils import escape | ||||
| import chardet | ||||
| import spacy | ||||
| import textwrap | ||||
|  | ||||
|  | ||||
| SPACY_MODELS = {'de': 'de_core_news_sm', | ||||
|                 'el': 'el_core_news_sm', | ||||
|                 'en': 'en_core_web_sm', | ||||
|                 'es': 'es_core_news_sm', | ||||
|                 'fr': 'fr_core_news_sm', | ||||
|                 'it': 'it_core_news_sm', | ||||
|                 'nl': 'nl_core_news_sm', | ||||
|                 'pt': 'pt_core_news_sm'} | ||||
|  | ||||
|  | ||||
| # Parse the given arguments | ||||
| parser = ArgumentParser(description=('Tag a text file with spaCy and save it ' | ||||
|                                      'as a verticalized text file.')) | ||||
| parser.add_argument('i', metavar='txt-sourcefile') | ||||
| parser.add_argument('o', metavar='vrt-destfile') | ||||
| parser.add_argument('-l', '--language', choices=SPACY_MODELS.keys(), | ||||
|                     required=True) | ||||
| parser.add_argument('--check-encoding', action='store_true') | ||||
| args = parser.parse_args() | ||||
|  | ||||
|  | ||||
| # If requested: Check the encoding of the text contents from the input file | ||||
| # Else: Use utf-8 | ||||
| if args.check_encoding: | ||||
|     with open(args.i, "rb") as input_file: | ||||
|         bytes = input_file.read() | ||||
|         encoding = chardet.detect(bytes)['encoding'] | ||||
| else: | ||||
|     encoding = 'utf-8' | ||||
|  | ||||
|  | ||||
| # Load the text contents from the input file | ||||
| with open(args.i, encoding=encoding) as input_file: | ||||
|     text = input_file.read() | ||||
|     # spaCys NLP is limited to strings with maximum 1 million characters at | ||||
|     # once. So we split it into suitable chunks. | ||||
|     text_chunks = textwrap.wrap(text, 1000000, break_long_words=False) | ||||
|     # the text variable potentially occupies a lot of system memory and is no | ||||
|     # longer needed... | ||||
|     del text | ||||
|  | ||||
|  | ||||
| # Setup the spaCy toolkit by loading the chosen language model | ||||
| nlp = spacy.load(SPACY_MODELS[args.language]) | ||||
|  | ||||
|  | ||||
| # Create the output file in verticalized text format | ||||
| # See: http://cwb.sourceforge.net/files/CWB_Encoding_Tutorial/node3.html | ||||
| output_file = open(args.o, 'w+') | ||||
| output_file.write('<?xml version="1.0" encoding="UTF-8"?>\n<corpus>\n<text>\n') | ||||
| for text_chunk in text_chunks: | ||||
|     doc = nlp(text_chunk) | ||||
|     for sent in doc.sents: | ||||
|         output_file.write('<s>\n') | ||||
|         for token in sent: | ||||
|             # Skip whitespace tokens | ||||
|             if token.text.isspace(): | ||||
|                 continue | ||||
|             output_file.write('{}'.format(escape(token.text)) | ||||
|                               + '\t{}'.format(escape(token.lemma_)) | ||||
|                               + '\t{}'.format(token.pos_) | ||||
|                               + '\t{}'.format(token.tag_) | ||||
|                               + '\t{}\n'.format(token.ent_type_ or 'NULL')) | ||||
|         output_file.write('</s>\n') | ||||
| output_file.write('</text>\n</corpus>') | ||||
| output_file.close() | ||||
							
								
								
									
										83
									
								
								spacy_nlp
									
									
									
									
									
								
							
							
						
						
									
										83
									
								
								spacy_nlp
									
									
									
									
									
								
							| @@ -1,83 +0,0 @@ | ||||
| #!/usr/bin/env python3.5 | ||||
| # coding=utf-8 | ||||
|  | ||||
| from xml.sax.saxutils import escape | ||||
| import argparse | ||||
| import chardet | ||||
| import spacy | ||||
| import textwrap | ||||
|  | ||||
| parser = argparse.ArgumentParser( | ||||
|     description=('Tag a text file with spaCy and save it as a verticalized ' | ||||
|                  'text file.') | ||||
| ) | ||||
| parser.add_argument('i', metavar='txt-sourcefile') | ||||
| parser.add_argument('-l', | ||||
|                     choices=['de', 'el', 'en', 'es', 'fr', 'it', 'nl', 'pt'], | ||||
|                     dest='lang', | ||||
|                     required=True) | ||||
| parser.add_argument('o', metavar='vrt-destfile') | ||||
| parser.add_argument('--check-encoding', | ||||
|                     default=False, | ||||
|                     action='store_true', | ||||
|                     dest='check_encoding' | ||||
|                     ) | ||||
| args = parser.parse_args() | ||||
|  | ||||
| SPACY_MODELS = {'de': 'de_core_news_sm', | ||||
|                 'el': 'el_core_news_sm', | ||||
|                 'en': 'en_core_web_sm', | ||||
|                 'es': 'es_core_news_sm', | ||||
|                 'fr': 'fr_core_news_sm', | ||||
|                 'it': 'it_core_news_sm', | ||||
|                 'nl': 'nl_core_news_sm', | ||||
|                 'pt': 'pt_core_news_sm'} | ||||
|  | ||||
| # Set the language model for spacy | ||||
| nlp = spacy.load(SPACY_MODELS[args.lang]) | ||||
|  | ||||
| # Try to determine the encoding of the text in the input file | ||||
| if args.check_encoding: | ||||
|     with open(args.i, "rb") as input_file: | ||||
|         bytes = input_file.read() | ||||
|         encoding = chardet.detect(bytes)['encoding'] | ||||
| else: | ||||
|     encoding = 'utf-8' | ||||
| # Read text from the input file and if neccessary split it into parts with a | ||||
| # length of less than 1 million characters. | ||||
| with open(args.i, encoding=encoding) as input_file: | ||||
|     text = input_file.read() | ||||
|     texts = textwrap.wrap(text, 1000000, break_long_words=False) | ||||
|     text = None | ||||
|  | ||||
| # Create and open the output file | ||||
| output_file = open(args.o, 'w+') | ||||
|  | ||||
| output_file.write('<?xml version="1.0" encoding="UTF-8"?>\n' | ||||
|                   '<corpus>\n' | ||||
|                   '<text>\n') | ||||
| for text in texts: | ||||
|     # Run spacy nlp over the text (partial string if above 1 million chars) | ||||
|     doc = nlp(text) | ||||
|     for sent in doc.sents: | ||||
|         output_file.write('<s>\n') | ||||
|         for token in sent: | ||||
|             # Skip whitespace tokens like "\n" or "\t" | ||||
|             if token.text.isspace(): | ||||
|                 continue | ||||
|             # Write all information in .vrt style to the output file | ||||
|             # text, lemma, simple_pos, pos, ner | ||||
|             output_file.write( | ||||
|                 '{}\t{}\t{}\t{}\t{}\n'.format( | ||||
|                     escape(token.text), | ||||
|                     escape(token.lemma_), | ||||
|                     token.pos_, | ||||
|                     token.tag_, | ||||
|                     token.ent_type_ if token.ent_type_ != '' else 'NULL' | ||||
|                 ) | ||||
|             ) | ||||
|         output_file.write('</s>\n') | ||||
| output_file.write('</text>\n' | ||||
|                   '</corpus>') | ||||
|  | ||||
| output_file.close() | ||||
							
								
								
									
										40
									
								
								wrapper/nlp
									
									
									
									
									
								
							
							
						
						
									
										40
									
								
								wrapper/nlp
									
									
									
									
									
								
							| @@ -1,35 +1,29 @@ | ||||
| #!/usr/bin/env python3 | ||||
| # coding=utf-8 | ||||
|  | ||||
| import argparse | ||||
| from argparse import ArgumentParser | ||||
| import os | ||||
| import subprocess | ||||
|  | ||||
| container_image = 'gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/nlp:latest' | ||||
| container_input_dir = '/input' | ||||
| container_output_dir = '/output' | ||||
| uid = str(os.getuid()) | ||||
| gid = str(os.getgid()) | ||||
| CONTAINER_IMAGE = 'gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/nlp:latest' | ||||
| CONTAINER_INPUT_DIR = '/input' | ||||
| CONTAINER_OUTPUT_DIR = '/output' | ||||
| UID = str(os.getuid()) | ||||
| GID = str(os.getgid()) | ||||
|  | ||||
| parser = argparse.ArgumentParser(add_help=False) | ||||
| parser.add_argument('-i', | ||||
|                     dest='input_dir', | ||||
|                     required=False) | ||||
| parser.add_argument('-o', | ||||
|                     dest='output_dir', | ||||
|                     required=False) | ||||
| parser = ArgumentParser(add_help=False) | ||||
| parser.add_argument('-i') | ||||
| parser.add_argument('-o') | ||||
| args, remaining_args = parser.parse_known_args() | ||||
|  | ||||
| cmd = ['docker', 'run', '--rm', '-it', '-u', uid + ':' + gid] | ||||
| if args.input_dir is not None: | ||||
|     host_input_dir = os.path.abspath(args.input_dir) | ||||
|     cmd += ['-v', host_input_dir + ':' + container_input_dir] | ||||
|     remaining_args += ['-i', container_input_dir] | ||||
| if args.output_dir is not None: | ||||
|     host_output_dir = os.path.abspath(args.output_dir) | ||||
|     cmd += ['-v', host_output_dir + ':' + container_output_dir] | ||||
|     remaining_args += ['-o', container_output_dir] | ||||
| cmd.append(container_image) | ||||
| cmd = ['docker', 'run', '--rm', '-it', '-u', '{}:{}'.format(UID, GID)] | ||||
| if args.o is not None: | ||||
|     cmd += ['-v', '{}:{}'.format(os.path.abspath(args.o), CONTAINER_OUTPUT_DIR)] | ||||
|     remaining_args.insert(0, CONTAINER_OUTPUT_DIR) | ||||
| if args.i is not None: | ||||
|     cmd += ['-v', '{}:{}'.format(os.path.abspath(args.i), CONTAINER_INPUT_DIR)] | ||||
|     remaining_args.insert(0, CONTAINER_INPUT_DIR) | ||||
| cmd.append(CONTAINER_IMAGE) | ||||
| cmd += remaining_args | ||||
|  | ||||
| subprocess.run(cmd) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user