mirror of
				https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
				synced 2025-10-31 12:42:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			77 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3.5
 | |
| # coding=utf-8
 | |
| 
 | |
| from argparse import ArgumentParser
 | |
| from xml.sax.saxutils import escape
 | |
| import chardet
 | |
| import spacy
 | |
| import textwrap
 | |
| 
 | |
| 
 | |
| SPACY_MODELS = {'de': 'de_core_news_sm',
 | |
|                 'el': 'el_core_news_sm',
 | |
|                 'en': 'en_core_web_sm',
 | |
|                 'es': 'es_core_news_sm',
 | |
|                 'fr': 'fr_core_news_sm',
 | |
|                 'it': 'it_core_news_sm',
 | |
|                 'nl': 'nl_core_news_sm',
 | |
|                 'pt': 'pt_core_news_sm'}
 | |
| 
 | |
| 
 | |
| # Parse the given arguments
 | |
| parser = ArgumentParser(description=('Tag a text file with spaCy and save it '
 | |
|                                      'as a verticalized text file.'))
 | |
| parser.add_argument('i', metavar='txt-sourcefile')
 | |
| parser.add_argument('o', metavar='vrt-destfile')
 | |
| parser.add_argument('-l', '--language', choices=SPACY_MODELS.keys(),
 | |
|                     required=True)
 | |
| parser.add_argument('--check-encoding', action='store_true')
 | |
| args = parser.parse_args()
 | |
| 
 | |
| 
 | |
| # If requested: Check the encoding of the text contents from the input file
 | |
| # Else: Use utf-8
 | |
| if args.check_encoding:
 | |
|     with open(args.i, "rb") as input_file:
 | |
|         bytes = input_file.read()
 | |
|         encoding = chardet.detect(bytes)['encoding']
 | |
| else:
 | |
|     encoding = 'utf-8'
 | |
| 
 | |
| 
 | |
| # Load the text contents from the input file
 | |
| with open(args.i, encoding=encoding) as input_file:
 | |
|     text = input_file.read()
 | |
|     # spaCys NLP is limited to strings with maximum 1 million characters at
 | |
|     # once. So we split it into suitable chunks.
 | |
|     text_chunks = textwrap.wrap(text, 1000000, break_long_words=False)
 | |
|     # the text variable potentially occupies a lot of system memory and is no
 | |
|     # longer needed...
 | |
|     del text
 | |
| 
 | |
| 
 | |
| # Setup the spaCy toolkit by loading the chosen language model
 | |
| nlp = spacy.load(SPACY_MODELS[args.language])
 | |
| 
 | |
| 
 | |
| # Create the output file in verticalized text format
 | |
| # See: http://cwb.sourceforge.net/files/CWB_Encoding_Tutorial/node3.html
 | |
| output_file = open(args.o, 'w+')
 | |
| output_file.write('<?xml version="1.0" encoding="UTF-8"?>\n<corpus>\n<text>\n')
 | |
| for text_chunk in text_chunks:
 | |
|     doc = nlp(text_chunk)
 | |
|     for sent in doc.sents:
 | |
|         output_file.write('<s>\n')
 | |
|         for token in sent:
 | |
|             # Skip whitespace tokens
 | |
|             if token.text.isspace():
 | |
|                 continue
 | |
|             output_file.write('{}'.format(escape(token.text))
 | |
|                               + '\t{}'.format(escape(token.lemma_))
 | |
|                               + '\t{}'.format(token.pos_)
 | |
|                               + '\t{}'.format(token.tag_)
 | |
|                               + '\t{}\n'.format(token.ent_type_ or 'NULL'))
 | |
|         output_file.write('</s>\n')
 | |
| output_file.write('</text>\n</corpus>')
 | |
| output_file.close()
 |