mirror of
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
synced 2024-12-27 14:34:18 +00:00
Add linewrap function and test.py for fun.
This commit is contained in:
parent
ff1e0a51c4
commit
d582d9771a
35
spacy_nlp
35
spacy_nlp
@ -5,6 +5,7 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
import spacy
|
import spacy
|
||||||
|
import textwrap
|
||||||
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="Tag a .txt file with spaCy and \
|
parser = argparse.ArgumentParser(description="Tag a .txt file with spaCy and \
|
||||||
@ -29,31 +30,33 @@ SPACY_MODELS = {"de": "de_core_news_sm", "en": "en_core_web_sm",
|
|||||||
"es": "es_core_news_sm", "fr": "fr_core_news_sm",
|
"es": "es_core_news_sm", "fr": "fr_core_news_sm",
|
||||||
"pt": "pt_core_news_sm"}
|
"pt": "pt_core_news_sm"}
|
||||||
|
|
||||||
|
|
||||||
# Set the language model for spacy
|
# Set the language model for spacy
|
||||||
nlp = spacy.load(SPACY_MODELS[args.lang])
|
nlp = spacy.load(SPACY_MODELS[args.lang])
|
||||||
|
|
||||||
# Read text from the input file
|
# Read text from the input file and if neccessary split it into parts with a
|
||||||
|
# length of less than 1 million characters.
|
||||||
with open(args.input) as input_file:
|
with open(args.input) as input_file:
|
||||||
text = input_file.read()
|
text = input_file.read()
|
||||||
|
texts = textwrap.wrap(text, 1000000, break_long_words=False)
|
||||||
|
|
||||||
# Run spacy nlp over the text
|
|
||||||
doc = nlp(text)
|
|
||||||
|
|
||||||
# Create and open the output file
|
# Create and open the output file
|
||||||
output_file = open(args.output, "w+")
|
output_file = open(args.output, "w+")
|
||||||
output_file.write('<?xml version="1.0" encoding="UTF-8"?>\n<corpus>\n<text id="' + args.input.rsplit(".", 1)[0] + '">\n')
|
output_file.write('<?xml version="1.0" encoding="UTF-8"?>\n<corpus>\n<text id="' + args.input.rsplit(".", 1)[0] + '">\n')
|
||||||
for sent in doc.sents:
|
for text in texts:
|
||||||
output_file.write('<s>\n')
|
# Run spacy nlp over the text (partial string if above 1 million chars)
|
||||||
for token in sent:
|
doc = nlp(text)
|
||||||
# Skip whitespace tokens like "\n" or "\t"
|
for sent in doc.sents:
|
||||||
if token.text.isspace():
|
output_file.write('<s>\n')
|
||||||
continue
|
for token in sent:
|
||||||
# Write all information in .vrt style to the output file
|
# Skip whitespace tokens like "\n" or "\t"
|
||||||
# text, lemma, simple_pos, pos, ner
|
if token.text.isspace():
|
||||||
output_file.write(token.text + "\t" + token.lemma_ + "\t"
|
continue
|
||||||
+ token.pos_ + "\t" + token.tag_ + "\t"
|
# Write all information in .vrt style to the output file
|
||||||
+ (token.ent_type_ if token.ent_type_ != "" else "NULL") + "\n")
|
# text, lemma, simple_pos, pos, ner
|
||||||
output_file.write('</s>\n')
|
output_file.write(token.text + "\t" + token.lemma_ + "\t"
|
||||||
|
+ token.pos_ + "\t" + token.tag_ + "\t"
|
||||||
|
+ (token.ent_type_ if token.ent_type_ != "" else "NULL") + "\n")
|
||||||
|
output_file.write('</s>\n')
|
||||||
output_file.write('</text>\n</corpus>')
|
output_file.write('</text>\n</corpus>')
|
||||||
output_file.close()
|
output_file.close()
|
||||||
|
36
test.py
Normal file
36
test.py
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
import textwrap
|
||||||
|
|
||||||
|
|
||||||
|
def limit_text(text, character_limit):
|
||||||
|
"""
|
||||||
|
This function checks if a string is below 1000000 (1 Million characters).
|
||||||
|
If it is below that limmit the text will be processed. If it is above the
|
||||||
|
limit, the text will be splitted into parts below 1 million characters.
|
||||||
|
Parts will be as long as possible.
|
||||||
|
Returns a list of strings each below the character limit.
|
||||||
|
"""
|
||||||
|
str_list = []
|
||||||
|
if(len(text) > character_limit):
|
||||||
|
cut_off = text.index(" ", character_limit - 10, character_limit)
|
||||||
|
tmp_strings = [text[:cut_off]]
|
||||||
|
tmp_strings.append(text[cut_off:])
|
||||||
|
for string in tmp_strings:
|
||||||
|
if(len(string) < character_limit):
|
||||||
|
str_list.append(string)
|
||||||
|
elif(len(string) > character_limit):
|
||||||
|
tmp_strings = limit_text(string, character_limit)
|
||||||
|
for string in tmp_strings:
|
||||||
|
str_list.append(string)
|
||||||
|
else:
|
||||||
|
str_list.append(text)
|
||||||
|
return str_list
|
||||||
|
|
||||||
|
def main():
|
||||||
|
text = "If true, TextWrapper attempts to detect sentence endings and ensure that sentences are always separated by exactly two spaces. This is generally desired for text in a monospaced font. However, the sentence detection algorithm is imperfect:"
|
||||||
|
texts = limit_text(text, 50)
|
||||||
|
lines = textwrap.wrap(text, 50, break_long_words=False)
|
||||||
|
print("Own version:", texts)
|
||||||
|
print("Lib:", lines)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in New Issue
Block a user