mirror of
				https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
				synced 2025-10-31 16:32:49 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			63 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			63 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| # coding=utf-8
 | |
| 
 | |
| 
 | |
| import argparse
 | |
| import os
 | |
| import spacy
 | |
| import textwrap
 | |
| 
 | |
| 
 | |
| parser = argparse.ArgumentParser(description="Tag a .txt file with spaCy and \
 | |
|                                               save it in .vrt format")
 | |
| parser.add_argument("-i",
 | |
|                     dest="input",
 | |
|                     help="Input file.",
 | |
|                     required=True)
 | |
| parser.add_argument("-l",
 | |
|                     choices=["de", "en", "es", "fr", "pt"],
 | |
|                     dest="lang",
 | |
|                     help="Language for tagging",
 | |
|                     required=True)
 | |
| parser.add_argument("-o",
 | |
|                     dest="output",
 | |
|                     help="Output file.",
 | |
|                     required=True)
 | |
| args = parser.parse_args()
 | |
| 
 | |
| 
 | |
| SPACY_MODELS = {"de": "de_core_news_sm", "en": "en_core_web_sm",
 | |
|                 "es": "es_core_news_sm", "fr": "fr_core_news_sm",
 | |
|                 "pt": "pt_core_news_sm"}
 | |
| 
 | |
| # Set the language model for spacy
 | |
| nlp = spacy.load(SPACY_MODELS[args.lang])
 | |
| 
 | |
| # Read text from the input file and if neccessary split it into parts with a
 | |
| # length of less than 1 million characters.
 | |
| with open(args.input) as input_file:
 | |
|     text = input_file.read()
 | |
|     texts = textwrap.wrap(text, 1000000, break_long_words=False)
 | |
| 
 | |
| 
 | |
| # Create and open the output file
 | |
| output_file = open(args.output, "w+")
 | |
| output_file.write('<?xml version="1.0" encoding="UTF-8"?>\n<corpus>\n<text id="' + args.input.rsplit(".", 1)[0] + '">\n')
 | |
| for text in texts:
 | |
|     # Run spacy nlp over the text (partial string if above 1 million chars)
 | |
|     doc = nlp(text)
 | |
|     for sent in doc.sents:
 | |
|         output_file.write('<s>\n')
 | |
|         for token in sent:
 | |
|             # Skip whitespace tokens like "\n" or "\t"
 | |
|             if token.text.isspace():
 | |
|                 continue
 | |
|             # Write all information in .vrt style to the output file
 | |
|             # text, lemma, simple_pos, pos, ner
 | |
|             output_file.write(token.text + "\t" + token.lemma_ + "\t"
 | |
|                               + token.pos_ + "\t" + token.tag_ + "\t"
 | |
|                               + (token.ent_type_ if token.ent_type_ != "" else "NULL") + "\n")
 | |
|         output_file.write('</s>\n')
 | |
| output_file.write('</text>\n</corpus>')
 | |
| output_file.close()
 |