mirror of
				https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
				synced 2025-10-31 09:52:44 +00:00 
			
		
		
		
	Add linewrap function and test.py for fun.
This commit is contained in:
		
							
								
								
									
										35
									
								
								spacy_nlp
									
									
									
									
									
								
							
							
						
						
									
										35
									
								
								spacy_nlp
									
									
									
									
									
								
							| @@ -5,6 +5,7 @@ | ||||
| import argparse | ||||
| import os | ||||
| import spacy | ||||
| import textwrap | ||||
|  | ||||
|  | ||||
| parser = argparse.ArgumentParser(description="Tag a .txt file with spaCy and \ | ||||
| @@ -29,31 +30,33 @@ SPACY_MODELS = {"de": "de_core_news_sm", "en": "en_core_web_sm", | ||||
|                 "es": "es_core_news_sm", "fr": "fr_core_news_sm", | ||||
|                 "pt": "pt_core_news_sm"} | ||||
|  | ||||
|  | ||||
| # Set the language model for spacy | ||||
| nlp = spacy.load(SPACY_MODELS[args.lang]) | ||||
|  | ||||
| # Read text from the input file | ||||
| # Read text from the input file and if neccessary split it into parts with a | ||||
| # length of less than 1 million characters. | ||||
| with open(args.input) as input_file: | ||||
|     text = input_file.read() | ||||
|     texts = textwrap.wrap(text, 1000000, break_long_words=False) | ||||
|  | ||||
| # Run spacy nlp over the text | ||||
| doc = nlp(text) | ||||
|  | ||||
| # Create and open the output file | ||||
| output_file = open(args.output, "w+") | ||||
| output_file.write('<?xml version="1.0" encoding="UTF-8"?>\n<corpus>\n<text id="' + args.input.rsplit(".", 1)[0] + '">\n') | ||||
| for sent in doc.sents: | ||||
|     output_file.write('<s>\n') | ||||
|     for token in sent: | ||||
|         # Skip whitespace tokens like "\n" or "\t" | ||||
|         if token.text.isspace(): | ||||
|             continue | ||||
|         # Write all information in .vrt style to the output file | ||||
|         # text, lemma, simple_pos, pos, ner | ||||
|         output_file.write(token.text + "\t" + token.lemma_ + "\t" | ||||
|                           + token.pos_ + "\t" + token.tag_ + "\t" | ||||
|                           + (token.ent_type_ if token.ent_type_ != "" else "NULL") + "\n") | ||||
|     output_file.write('</s>\n') | ||||
| for text in texts: | ||||
|     # Run spacy nlp over the text (partial string if above 1 million chars) | ||||
|     doc = nlp(text) | ||||
|     for sent in doc.sents: | ||||
|         output_file.write('<s>\n') | ||||
|         for token in sent: | ||||
|             # Skip whitespace tokens like "\n" or "\t" | ||||
|             if token.text.isspace(): | ||||
|                 continue | ||||
|             # Write all information in .vrt style to the output file | ||||
|             # text, lemma, simple_pos, pos, ner | ||||
|             output_file.write(token.text + "\t" + token.lemma_ + "\t" | ||||
|                               + token.pos_ + "\t" + token.tag_ + "\t" | ||||
|                               + (token.ent_type_ if token.ent_type_ != "" else "NULL") + "\n") | ||||
|         output_file.write('</s>\n') | ||||
| output_file.write('</text>\n</corpus>') | ||||
| output_file.close() | ||||
|   | ||||
							
								
								
									
										36
									
								
								test.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										36
									
								
								test.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,36 @@ | ||||
| import textwrap | ||||
|  | ||||
|  | ||||
| def limit_text(text, character_limit): | ||||
|     """ | ||||
|     This function checks if a string is below 1000000 (1 Million characters). | ||||
|     If it is below that limmit the text will be processed. If it is above the | ||||
|     limit, the text will be splitted into parts below 1 million characters. | ||||
|     Parts will be as long as possible. | ||||
|     Returns a list of strings each below the character limit. | ||||
|     """ | ||||
|     str_list = [] | ||||
|     if(len(text) > character_limit): | ||||
|         cut_off = text.index(" ", character_limit - 10, character_limit) | ||||
|         tmp_strings = [text[:cut_off]] | ||||
|         tmp_strings.append(text[cut_off:]) | ||||
|         for string in tmp_strings: | ||||
|             if(len(string) < character_limit): | ||||
|                 str_list.append(string) | ||||
|             elif(len(string) > character_limit): | ||||
|                 tmp_strings = limit_text(string, character_limit) | ||||
|                 for string in tmp_strings: | ||||
|                     str_list.append(string) | ||||
|     else: | ||||
|         str_list.append(text) | ||||
|     return str_list | ||||
|  | ||||
| def main(): | ||||
|     text = "If true, TextWrapper attempts to detect sentence endings and ensure that sentences are always separated by exactly two spaces. This is generally desired for text in a monospaced font. However, the sentence detection algorithm is imperfect:" | ||||
|     texts = limit_text(text, 50) | ||||
|     lines = textwrap.wrap(text, 50, break_long_words=False) | ||||
|     print("Own version:", texts) | ||||
|     print("Lib:", lines) | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     main() | ||||
		Reference in New Issue
	
	Block a user