mirror of
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr.git
synced 2025-01-13 11:30:35 +00:00
3.0 KiB
3.0 KiB
OCR - Optical Character Recognition
This software implements a heavily parallelized pipeline to recognize text in PDF files. It is used for nopaque's OCR service but you can also use it standalone, for that purpose a convenient wrapper script is provided.
Software used in this pipeline implementation
- Official Debian Docker image (buster-slim) and programs from its free repositories: https://hub.docker.com/_/debian
- ocropy (1.3.3): https://github.com/ocropus/ocropy/releases/tag/v1.3.3
- pyFlow (1.1.20): https://github.com/Illumina/pyflow/releases/tag/v1.1.20
- Tesseract OCR (4.1.1): https://github.com/tesseract-ocr/tesseract/releases/tag/4.1.1
- tessdata_best (4.1.0): https://github.com/tesseract-ocr/tessdata_best/releases/tag/4.1.0
Use this image
- Create input and output directories for the pipeline.
mkdir -p /<my_data_location>/input /<my_data_location>/output
-
Place your PDF files inside
/<my_data_location>/input
. Files should all contain text of the same language. -
Start the pipeline process. Check the Pipeline arguments section for more details.
# Option one: Use the wrapper script
## Install the wrapper script (only on first run). Get it from https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr/-/raw/1.0.0/wrapper/ocr, make it executeable and add it to your ${PATH}
cd /<my_data_location>
ocr -i input -l <language_code> -o output <optional_pipeline_arguments>
# Option two: Classic Docker style
docker run \
--rm \
-it \
-u $(id -u $USER):$(id -g $USER) \
-v /<my_data_location>/input:/input \
-v /<my_data_location>/output:/output \
gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/ocr:1.0.0 \
-i /input \
-l <language_code>
-o /output \
<optional_pipeline_arguments>
- Check your results in the
/<my_data_location>/output
directory.
### Pipeline arguments
`-l languagecode`
* Tells tesseract which language will be used.
* options = ara (Arabic), chi_tra (Chinese - Traditional), dan (Danish), deu (German), ell (Greek, Modern (1453-)), eng (English), enm (Middle englisch), fra (French), frk (German Fraktur), frm (Middle french), ita (Italian), por (Portuguese), rus (Russian), spa (Spanish)
* required = True
`--keep-intermediates`
* If set, all intermediate files created during the OCR process will be
kept.
* default = False
* required = False
`--nCores corenumber`
* Sets the number of CPU cores being used during the OCR process.
* default = min(4, multiprocessing.cpu_count())
* required = False
`--skip-binarisation`
* Used to skip binarization with ocropus. If skipped, only the tesseract binarization is used.
* default = False
``` bash
# Example with all arguments used
docker run \
--rm \
-it \
-u $(id -u $USER):$(id -g $USER) \
-v "$HOME"/ocr/input:/input \
-v "$HOME"/ocr/output:/output \
gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/ocr:1.0.0 \
-i /input \
-l eng \
-o /output \
--keep_intermediates \
--nCores 8 \
--skip-binarisation