mirror of
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr.git
synced 2024-12-25 17:34:18 +00:00
50 lines
2.2 KiB
Markdown
50 lines
2.2 KiB
Markdown
# OCR - Optical Character Recognition
|
|
|
|
This software implements a heavily parallelized pipeline to recognize text in PDF files. It is used for nopaque's OCR service but you can also use it standalone, for that purpose a convenient wrapper script is provided. The pipeline is designed to run on Linux operating systems, but with some tweaks it should also run on Windows with WSL installed.
|
|
|
|
## Software used in this pipeline implementation
|
|
|
|
- Official Debian Docker image (buster-slim): https://hub.docker.com/_/debian
|
|
- Software from Debian Buster's free repositories
|
|
- ocropy (1.3.3): https://github.com/ocropus/ocropy/releases/tag/v1.3.3
|
|
- pyFlow (1.1.20): https://github.com/Illumina/pyflow/releases/tag/v1.1.20
|
|
- Tesseract OCR (5.0.0): https://github.com/tesseract-ocr/tesseract/releases/tag/5.0.0
|
|
|
|
## Installation
|
|
|
|
1. Install Docker and Python 3.
|
|
2. Clone this repository: `git clone https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr.git`
|
|
3. Build the Docker image: `docker build -t gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/ocr:v0.1.0 ocr`
|
|
4. Add the wrapper script (`wrapper/ocr` relative to this README file) to your `${PATH}`.
|
|
5. Create working directories for the pipeline: `mkdir -p /<my_data_location>/{input,models,output}`.
|
|
6. Place your Tesseract OCR model(s) inside `/<my_data_location>/models`.
|
|
|
|
## Use the Pipeline
|
|
|
|
1. Place your PDF files inside `/<my_data_location>/input`. Files should all contain text of the same language.
|
|
2. Clear your `/<my_data_location>/output` directory.
|
|
3. Start the pipeline process. Check the pipeline help (`ocr --help`) for more details.
|
|
```bash
|
|
cd /<my_data_location>
|
|
# <model_code> is the model filename without the ".traineddata" suffix
|
|
ocr \
|
|
--input-dir input \
|
|
--output-dir output \
|
|
--model-file models/<model>
|
|
-m <model_code> <optional_pipeline_arguments>
|
|
# More then one model
|
|
ocr \
|
|
--input-dir input \
|
|
--output-dir output \
|
|
--model-file models/<model1>
|
|
--model-file models/<model2>
|
|
-m <model1_code>+<model2_code> <optional_pipeline_arguments>
|
|
# Instead of multiple --model-file statements, you can also use
|
|
ocr \
|
|
--input-dir input \
|
|
--output-dir output \
|
|
--model-file models/*
|
|
-m <model1_code>+<model2_code> <optional_pipeline_arguments>
|
|
```
|
|
4. Check your results in the `/<my_data_location>/output` directory.
|