Use new cqi version. No chunking needed anymore

This commit is contained in:
Patrick Jentsch 2023-09-08 11:12:43 +02:00
parent aad347caa0
commit 9200837e63
4 changed files with 109 additions and 137 deletions

View File

@ -121,10 +121,7 @@ class CQiNamespace(Namespace):
socketio.sleep(3)
retry_counter -= 1
db.session.refresh(db_corpus)
cqi_client: CQiClient = CQiClient(
f'cqpserver_{db_corpus_id}',
timeout=float('inf')
)
cqi_client: CQiClient = CQiClient(f'cqpserver_{db_corpus_id}')
session['cqi_over_sio'] = {
'cqi_client': cqi_client,
'cqi_client_lock': Lock(),

View File

@ -1,6 +1,7 @@
from collections import Counter
from cqi import CQiClient
from cqi.models.corpora import Corpus as CQiCorpus
from cqi.models.subcorpora import Subcorpus as CQiSubcorpus
from cqi.models.attributes import (
PositionalAttribute as CQiPositionalAttribute,
StructuralAttribute as CQiStructuralAttribute
@ -40,161 +41,132 @@ def ext_corpus_update_db(corpus: str) -> CQiStatusOk:
def ext_corpus_static_data(corpus: str) -> Dict:
db_corpus_id: int = session['cqi_over_sio']['db_corpus_id']
db_corpus: Corpus = Corpus.query.get(db_corpus_id)
cache_file_path: str = os.path.join(db_corpus.path, 'cwb', 'static.json.gz')
if os.path.exists(cache_file_path):
with open(cache_file_path, 'rb') as f:
static_data_file_path: str = os.path.join(db_corpus.path, 'cwb', 'static.json.gz')
if os.path.exists(static_data_file_path):
with open(static_data_file_path, 'rb') as f:
return f.read()
cqi_client: CQiClient = session['cqi_over_sio']['cqi_client']
cqi_corpus: CQiCorpus = cqi_client.corpora.get(corpus)
cqi_p_attrs: Dict[str, CQiPositionalAttribute] = {
p_attr.name: p_attr
for p_attr in cqi_corpus.positional_attributes.list()
}
cqi_s_attrs: Dict[str, CQiStructuralAttribute] = {
s_attr.name: s_attr
for s_attr in cqi_corpus.structural_attributes.list()
}
static_corpus_data = {
cqi_p_attrs: List[CQiPositionalAttribute] = cqi_corpus.positional_attributes.list()
cqi_s_attrs: List[CQiStructuralAttribute] = cqi_corpus.structural_attributes.list()
static_data = {
'corpus': {
'bounds': [0, cqi_corpus.size - 1],
'counts': {
'token': cqi_corpus.size
},
'freqs': {}
},
'p_attrs': {},
's_attrs': {},
'values': {'p_attrs': {}, 's_attrs': {}}
}
for p_attr in cqi_p_attrs.values():
static_corpus_data['corpus']['freqs'][p_attr.name] = {}
chunk_size = 10000
p_attr_id_list = list(range(p_attr.lexicon_size))
chunks = [p_attr_id_list[i:i+chunk_size] for i in range(0, len(p_attr_id_list), chunk_size)]
for p_attr in cqi_p_attrs:
print(f'corpus.freqs.{p_attr.name}')
static_data['corpus']['freqs'][p_attr.name] = []
p_attr_id_list: List[int] = list(range(p_attr.lexicon_size))
static_data['corpus']['freqs'][p_attr.name].extend(p_attr.freqs_by_ids(p_attr_id_list))
del p_attr_id_list
for chunk in chunks:
# print(f'corpus.freqs.{p_attr.name}: {chunk[0]} - {chunk[-1]}')
static_corpus_data['corpus']['freqs'][p_attr.name].update(
dict(zip(chunk, p_attr.freqs_by_ids(chunk)))
)
del chunks
static_corpus_data['p_attrs'][p_attr.name] = {}
cpos_list = list(range(cqi_corpus.size))
chunks = [cpos_list[i:i+chunk_size] for i in range(0, len(cpos_list), chunk_size)]
print(f'p_attrs.{p_attr.name}')
static_data['p_attrs'][p_attr.name] = []
cpos_list: List[int] = list(range(cqi_corpus.size))
static_data['p_attrs'][p_attr.name].extend(p_attr.ids_by_cpos(cpos_list))
del cpos_list
for chunk in chunks:
# print(f'p_attrs.{p_attr.name}: {chunk[0]} - {chunk[-1]}')
static_corpus_data['p_attrs'][p_attr.name].update(
dict(zip(chunk, p_attr.ids_by_cpos(chunk)))
)
del chunks
static_corpus_data['values']['p_attrs'][p_attr.name] = {}
p_attr_id_list = list(range(p_attr.lexicon_size))
chunks = [p_attr_id_list[i:i+chunk_size] for i in range(0, len(p_attr_id_list), chunk_size)]
print(f'values.p_attrs.{p_attr.name}')
static_data['values']['p_attrs'][p_attr.name] = []
p_attr_id_list: List[int] = list(range(p_attr.lexicon_size))
static_data['values']['p_attrs'][p_attr.name].extend(p_attr.values_by_ids(p_attr_id_list))
del p_attr_id_list
for chunk in chunks:
# print(f'values.p_attrs.{p_attr.name}: {chunk[0]} - {chunk[-1]}')
static_corpus_data['values']['p_attrs'][p_attr.name].update(
dict(zip(chunk, p_attr.values_by_ids(chunk)))
)
del chunks
for s_attr in cqi_s_attrs.values():
for s_attr in cqi_s_attrs:
if s_attr.has_values:
continue
static_corpus_data['corpus']['counts'][s_attr.name] = s_attr.size
static_corpus_data['s_attrs'][s_attr.name] = {'lexicon': {}, 'values': None}
static_corpus_data['values']['s_attrs'][s_attr.name] = {}
##########################################################################
# A faster way to get cpos boundaries for smaller s_attrs #
##########################################################################
# if s_attr.name in ['s', 'ent']:
# cqi_corpus.query('Last', f'<{s_attr.name}> []* </{s_attr.name}>;')
# cqi_subcorpus = cqi_corpus.subcorpora.get('Last')
# first_match = 0
# last_match = cqi_subcorpus.size - 1
# match_boundaries = zip(
# range(first_match, last_match + 1),
# cqi_subcorpus.dump(cqi_subcorpus.fields['match'], first_match, last_match),
# cqi_subcorpus.dump(cqi_subcorpus.fields['matchend'], first_match, last_match)
# )
# for id, lbound, rbound in match_boundaries:
# static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id] = {}
# static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id]['bounds'] = [lbound, rbound]
# static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id]['counts'] = {}
# static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id]['counts']['token'] = rbound - lbound + 1
# cqi_subcorpus.drop()
static_data['s_attrs'][s_attr.name] = {'lexicon': [], 'values': None}
if s_attr.name in ['s', 'ent']:
##############################################################
# A faster way to get cpos boundaries for smaller s_attrs #
# Note: Needs more testing, don't use it in production #
##############################################################
cqi_corpus.query('Last', f'<{s_attr.name}> []* </{s_attr.name}>;')
cqi_subcorpus: CQiSubcorpus = cqi_corpus.subcorpora.get('Last')
first_match: int = 0
last_match: int = cqi_subcorpus.size - 1
match_boundaries = zip(
range(first_match, last_match + 1),
cqi_subcorpus.dump(
cqi_subcorpus.fields['match'],
first_match,
last_match
),
cqi_subcorpus.dump(
cqi_subcorpus.fields['matchend'],
first_match,
last_match
)
)
cqi_subcorpus.drop()
del cqi_subcorpus, first_match, last_match
for id, lbound, rbound in match_boundaries:
static_data['s_attrs'][s_attr.name]['lexicon'].append({})
print(f's_attrs.{s_attr.name}.lexicon.{id}.bounds')
static_data['s_attrs'][s_attr.name]['lexicon'][id]['bounds'] = [lbound, rbound]
del match_boundaries
if s_attr.name != 'text':
continue
for id in range(0, s_attr.size):
# print(f's_attrs.{s_attr.name}.lexicon.{id}')
static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id] = {
'bounds': None,
'counts': None,
'freqs': None
}
if s_attr.name != 'text':
continue
static_data['s_attrs'][s_attr.name]['lexicon'].append({})
# This is a very slow operation, thats why we only use it for
# the text attribute
lbound, rbound = s_attr.cpos_by_id(id)
# print(f's_attrs.{s_attr.name}.lexicon.{id}.bounds')
static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id]['bounds'] = [lbound, rbound]
# print(f's_attrs.{s_attr.name}.lexicon.{id}.counts')
static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id]['counts'] = {}
static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id]['counts']['token'] = rbound - lbound + 1
cpos_list = list(range(lbound, rbound + 1))
chunks = [cpos_list[i:i+chunk_size] for i in range(0, len(cpos_list), chunk_size)]
del cpos_list
ent_ids = set()
for chunk in chunks:
# print(f'Gather ent_ids from cpos: {chunk[0]} - {chunk[-1]}')
ent_ids.update({x for x in cqi_s_attrs['ent'].ids_by_cpos(chunk) if x != -1})
static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id]['counts']['ent'] = len(ent_ids)
del ent_ids
s_ids = set()
for chunk in chunks:
# print(f'Gather s_ids from cpos: {chunk[0]} - {chunk[-1]}')
s_ids.update({x for x in cqi_s_attrs['s'].ids_by_cpos(chunk) if x != -1})
static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id]['counts']['s'] = len(s_ids)
del s_ids
# print(f's_attrs.{s_attr.name}.lexicon.{id}.freqs')
static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id]['freqs'] = {}
for p_attr in cqi_p_attrs.values():
p_attr_ids = []
for chunk in chunks:
# print(f'Gather p_attr_ids from cpos: {chunk[0]} - {chunk[-1]}')
p_attr_ids.extend(p_attr.ids_by_cpos(chunk))
static_corpus_data['s_attrs'][s_attr.name]['lexicon'][id]['freqs'][p_attr.name] = dict(Counter(p_attr_ids))
print(f's_attrs.{s_attr.name}.lexicon.{id}.bounds')
static_data['s_attrs'][s_attr.name]['lexicon'][id]['bounds'] = [lbound, rbound]
static_data['s_attrs'][s_attr.name]['lexicon'][id]['freqs'] = {}
cpos_list: List[int] = list(range(lbound, rbound + 1))
for p_attr in cqi_p_attrs:
p_attr_ids: List[int] = []
p_attr_ids.extend(p_attr.ids_by_cpos(cpos_list))
print(f's_attrs.{s_attr.name}.lexicon.{id}.freqs.{p_attr.name}')
static_data['s_attrs'][s_attr.name]['lexicon'][id]['freqs'][p_attr.name] = dict(Counter(p_attr_ids))
del p_attr_ids
del chunks
sub_s_attrs = cqi_corpus.structural_attributes.list(filters={'part_of': s_attr})
s_attr_value_names: List[str] = [
del cpos_list
sub_s_attrs: List[CQiStructuralAttribute] = cqi_corpus.structural_attributes.list(filters={'part_of': s_attr})
print(f's_attrs.{s_attr.name}.values')
static_data['s_attrs'][s_attr.name]['values'] = [
sub_s_attr.name[(len(s_attr.name) + 1):]
for sub_s_attr in sub_s_attrs
]
s_attr_id_list = list(range(s_attr.size))
chunks = [s_attr_id_list[i:i+chunk_size] for i in range(0, len(s_attr_id_list), chunk_size)]
del s_attr_id_list
sub_s_attr_values = []
s_attr_id_list: List[int] = list(range(s_attr.size))
sub_s_attr_values: List[str] = []
for sub_s_attr in sub_s_attrs:
tmp = []
for chunk in chunks:
tmp.extend(sub_s_attr.values_by_ids(chunk))
tmp.extend(sub_s_attr.values_by_ids(s_attr_id_list))
sub_s_attr_values.append(tmp)
del tmp
del chunks
# print(f's_attrs.{s_attr.name}.values')
static_corpus_data['s_attrs'][s_attr.name]['values'] = s_attr_value_names
# print(f'values.s_attrs.{s_attr.name}')
static_corpus_data['values']['s_attrs'][s_attr.name] = {
s_attr_id: {
s_attr_value_name: sub_s_attr_values[s_attr_value_name_idx][s_attr_id_idx]
del s_attr_id_list
print(f'values.s_attrs.{s_attr.name}')
static_data['values']['s_attrs'][s_attr.name] = [
{
s_attr_value_name: sub_s_attr_values[s_attr_value_name_idx][s_attr_id]
for s_attr_value_name_idx, s_attr_value_name in enumerate(
static_corpus_data['s_attrs'][s_attr.name]['values']
static_data['s_attrs'][s_attr.name]['values']
)
} for s_attr_id_idx, s_attr_id in enumerate(range(0, s_attr.size))
}
} for s_attr_id in range(0, s_attr.size)
]
del sub_s_attr_values
with gzip.open(cache_file_path, 'wt') as f:
json.dump(static_corpus_data, f)
del static_corpus_data
with open(cache_file_path, 'rb') as f:
print('Saving static data to file')
with gzip.open(static_data_file_path, 'wt') as f:
json.dump(static_data, f)
del static_data
print('Sending static data to client')
with open(static_data_file_path, 'rb') as f:
return f.read()

View File

@ -93,8 +93,8 @@ class CorpusAnalysisStaticVisualization {
renderGeneralCorpusInfo() {
let corpusData = this.data.corpus.o.staticData;
document.querySelector('.corpus-num-tokens').innerHTML = corpusData.corpus.counts.token;
document.querySelector('.corpus-num-s').innerHTML = corpusData.corpus.counts.s;
document.querySelector('.corpus-num-tokens').innerHTML = corpusData.corpus.bounds[1] - corpusData.corpus.bounds[0];
document.querySelector('.corpus-num-s').innerHTML = corpusData.s_attrs.s.lexicon.length;
document.querySelector('.corpus-num-unique-words').innerHTML = Object.entries(corpusData.corpus.freqs.word).length;
document.querySelector('.corpus-num-unique-lemmas').innerHTML = Object.entries(corpusData.corpus.freqs.lemma).length;
document.querySelector('.corpus-num-unique-pos').innerHTML = Object.entries(corpusData.corpus.freqs.pos).length;
@ -111,8 +111,11 @@ class CorpusAnalysisStaticVisualization {
let resource = {
title: corpusData.values.s_attrs.text[i].title,
publishing_year: corpusData.values.s_attrs.text[i].publishing_year,
num_tokens: corpusData.s_attrs.text.lexicon[i].counts.token,
num_sentences: corpusData.s_attrs.text.lexicon[i].counts.s,
// num_sentences: corpusData.s_attrs.text.lexicon[i].counts.s,
num_tokens: corpusData.s_attrs.text.lexicon[i].bounds[1] - corpusData.s_attrs.text.lexicon[i].bounds[0],
num_sentences: corpusData.s_attrs.s.lexicon.filter((s) => {
return s.bounds[0] >= corpusData.s_attrs.text.lexicon[i].bounds[0] && s.bounds[1] <= corpusData.s_attrs.text.lexicon[i].bounds[1];
}).length,
num_unique_words: Object.entries(corpusData.s_attrs.text.lexicon[i].freqs.word).length,
num_unique_lemmas: Object.entries(corpusData.s_attrs.text.lexicon[i].freqs.lemma).length,
num_unique_pos: Object.entries(corpusData.s_attrs.text.lexicon[i].freqs.pos).length,
@ -125,7 +128,7 @@ class CorpusAnalysisStaticVisualization {
corpusTextInfoList.add(textData);
let textCountChipElement = document.querySelector('.text-count-chip');
textCountChipElement.innerHTML = `Text count: ${corpusData.corpus.counts.text}`;
textCountChipElement.innerHTML = `Text count: ${corpusData.s_attrs.text.lexicon.length}`;
}
renderTextProportionsGraphic() {
@ -198,7 +201,7 @@ class CorpusAnalysisStaticVisualization {
default:
graphData = [
{
values: texts.map(text => text[1].counts.token),
values: texts.map(text => text[1].bounds[1] - text[1].bounds[0]),
labels: texts.map(text => `${corpusData.values.s_attrs.text[text[0]].title} (${corpusData.values.s_attrs.text[text[0]].publishing_year})`),
type: graphtype
}

View File

@ -1,5 +1,5 @@
apifairy
cqi>=0.1.6
cqi>=0.1.7
dnspython==2.2.1
docker
eventlet