mirror of
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
synced 2025-07-03 08:43:35 +00:00
Compare commits
5 Commits
cd976692d6
...
1.0.0b
Author | SHA1 | Date | |
---|---|---|---|
5139fd9727 | |||
fd39246e4b | |||
bd5d8ddedb | |||
f7b7da2b1f | |||
2813d1a222 |
7
nlp
7
nlp
@ -71,6 +71,7 @@ class NLPPipeline(WorkflowRunner):
|
||||
'''
|
||||
nlp_tasks = []
|
||||
n_cores = max(1, int(self.getNCores() / len(self.jobs)))
|
||||
mem_mb = min(n_cores * 2048, int(self.getMemMb() / len(self.jobs)))
|
||||
for i, job in enumerate(self.jobs):
|
||||
output_file = os.path.join(job.output_dir, '{}.nopaque-stand-off.json'.format(job.name)) # noqa
|
||||
cmd = 'spacy-nlp'
|
||||
@ -81,7 +82,7 @@ class NLPPipeline(WorkflowRunner):
|
||||
deps = 'setup_output_directory_-_{}'.format(i)
|
||||
lbl = 'nlp_-_{}'.format(i)
|
||||
task = self.addTask(command=cmd, dependencies=deps, label=lbl,
|
||||
nCores=n_cores)
|
||||
memMb=mem_mb, nCores=n_cores)
|
||||
nlp_tasks.append(task)
|
||||
|
||||
'''
|
||||
@ -147,9 +148,11 @@ def parse_args():
|
||||
required=True)
|
||||
parser.add_argument('-l', '--language',
|
||||
choices=SPACY_MODELS.keys(),
|
||||
help='Language of the input (2-character ISO 639-1 language codes)', # noqa
|
||||
required=True)
|
||||
parser.add_argument('--check-encoding',
|
||||
action='store_true')
|
||||
action='store_true',
|
||||
help='Check encoding of the input file, UTF-8 is used instead') # noqa
|
||||
parser.add_argument('--log-dir',
|
||||
help='Logging directory')
|
||||
parser.add_argument('--mem-mb',
|
||||
|
54
spacy-nlp
54
spacy-nlp
@ -16,35 +16,40 @@ spacy_models = {spacy.info(pipeline)['lang']: pipeline
|
||||
|
||||
# Parse the given arguments
|
||||
parser = ArgumentParser(description='Create annotations for a given txt file')
|
||||
parser.add_argument('input', metavar='Path to txt input file')
|
||||
parser.add_argument('output', metavar='Path to JSON output file')
|
||||
parser.add_argument('input', help='Path to txt input file')
|
||||
parser.add_argument('output', help='Path to JSON output file')
|
||||
parser.add_argument('-l', '--language',
|
||||
choices=spacy_models.keys(),
|
||||
help='Language of the input (2-character ISO 639-1 language codes)', # noqa
|
||||
required=True)
|
||||
parser.add_argument('-c', '--check-encoding', action='store_true')
|
||||
parser.add_argument('-c', '--check-encoding',
|
||||
action='store_true',
|
||||
help='Check encoding of the input file, UTF-8 is used instead') # noqa
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
# If requested: Check the encoding of the text contents from the input file
|
||||
# Else: Use utf-8
|
||||
with open(args.input, "rb") as input_file:
|
||||
with open(args.input, "rb") as text_file:
|
||||
if args.check_encoding:
|
||||
encoding = chardet.detect(input_file.read())['encoding']
|
||||
encoding = chardet.detect(text_file.read())['encoding']
|
||||
else:
|
||||
encoding = 'utf-8'
|
||||
text_file.seek(0)
|
||||
text_md5 = hashlib.md5()
|
||||
for chunk in iter(lambda: input_file.read(128 * text_md5.block_size), b''):
|
||||
for chunk in iter(lambda: text_file.read(128 * text_md5.block_size), b''):
|
||||
text_md5.update(chunk)
|
||||
|
||||
# Load the text contents from the input file
|
||||
with open(args.input, encoding=encoding) as input_file:
|
||||
text = input_file.read()
|
||||
# spaCys NLP is limited to strings with maximum 1 million characters at
|
||||
with open(args.input, encoding=encoding) as text_file:
|
||||
# spaCy NLP is limited to strings with a maximum of 1 million characters at
|
||||
# once. So we split it into suitable chunks.
|
||||
text_chunks = textwrap.wrap(text, 1000000, break_long_words=False)
|
||||
# the text variable potentially occupies a lot of system memory and is no
|
||||
# longer needed...
|
||||
del text
|
||||
text_chunks = textwrap.wrap(
|
||||
text_file.read(),
|
||||
1000000,
|
||||
break_long_words=False,
|
||||
break_on_hyphens=False,
|
||||
drop_whitespace=False,
|
||||
expand_tabs=False,
|
||||
replace_whitespace=False
|
||||
)
|
||||
|
||||
model = spacy_models[args.language]
|
||||
nlp = spacy.load(model)
|
||||
@ -59,6 +64,7 @@ meta = {
|
||||
}
|
||||
},
|
||||
'file': {
|
||||
'encoding': encoding,
|
||||
'md5': text_md5.hexdigest(),
|
||||
'name': os.path.basename(args.input)
|
||||
}
|
||||
@ -127,7 +133,8 @@ tags = {
|
||||
annotations = []
|
||||
|
||||
chunk_offset = 0
|
||||
for text_chunk in text_chunks:
|
||||
while text_chunks:
|
||||
text_chunk = text_chunks.pop(0)
|
||||
doc = nlp(text_chunk)
|
||||
for token in doc:
|
||||
if token.is_space:
|
||||
@ -142,12 +149,12 @@ for text_chunk in text_chunks:
|
||||
for ent_candidate in token.sent.ents:
|
||||
if ent_candidate.start_char == token.idx:
|
||||
ent = ent_candidate
|
||||
annotation = {'start': ent.start_char + chunk_offset,
|
||||
'end': ent.end_char + chunk_offset,
|
||||
'tag': 'ent',
|
||||
'properties': {'type': token.ent_type_}}
|
||||
annotations.append(annotation)
|
||||
break
|
||||
annotation = {'start': ent.start_char + chunk_offset,
|
||||
'end': ent.end_char + chunk_offset,
|
||||
'tag': 'ent',
|
||||
'properties': {'type': token.ent_type_}}
|
||||
annotations.append(annotation)
|
||||
annotation = {'start': token.idx + chunk_offset,
|
||||
'end': token.idx + len(token.text) + chunk_offset,
|
||||
'tag': 'token',
|
||||
@ -157,7 +164,8 @@ for text_chunk in text_chunks:
|
||||
if token.ent_type_:
|
||||
annotation['properties']['ner'] = token.ent_type_
|
||||
annotations.append(annotation)
|
||||
chunk_offset = len(text_chunk)
|
||||
chunk_offset += len(text_chunk)
|
||||
text_chunk = None
|
||||
|
||||
with open(args.output, 'w') as output_file:
|
||||
json.dump({'meta': meta, 'tags': tags, 'annotations': annotations},
|
||||
|
67
vrt-creator
67
vrt-creator
@ -3,19 +3,13 @@
|
||||
|
||||
from argparse import ArgumentParser
|
||||
from xml.sax.saxutils import escape
|
||||
import hashlib
|
||||
import json
|
||||
|
||||
# Parse the given arguments
|
||||
parser = ArgumentParser(description='Create annotations for a given txt file')
|
||||
parser.add_argument('input', metavar='Path to txt input file')
|
||||
parser.add_argument('annotations', metavar='Path to JSON annotation file')
|
||||
parser.add_argument('output', metavar='Path to vrt output file')
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.input) as text_file, \
|
||||
open(args.annotations) as data_file:
|
||||
text = text_file.read()
|
||||
stand_off_data = json.load(data_file)
|
||||
# Two global ressources - Not very elegant but it works for now
|
||||
stand_off_data = None
|
||||
text = None
|
||||
|
||||
|
||||
def meta_to_string():
|
||||
@ -26,7 +20,8 @@ def meta_to_string():
|
||||
stand_off_data['meta']['generator']['arguments']['check_encoding'],
|
||||
stand_off_data['meta']['generator']['arguments']['language']
|
||||
)
|
||||
string += '<file name="{}" md5="{}"/>\n'.format(
|
||||
string += '<file encoding="{}" name="{}" md5="{}"/>\n'.format(
|
||||
stand_off_data['meta']['file']['encoding'],
|
||||
stand_off_data['meta']['file']['name'],
|
||||
stand_off_data['meta']['file']['md5']
|
||||
)
|
||||
@ -93,15 +88,43 @@ def annotations_to_string(end=float('inf')):
|
||||
return string
|
||||
|
||||
|
||||
vrt = ''
|
||||
vrt += '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>\n'
|
||||
vrt += '<corpus>\n'
|
||||
vrt += '<text>\n'
|
||||
vrt += meta_to_string()
|
||||
vrt += tags_to_string()
|
||||
vrt += annotations_to_string()
|
||||
vrt += '</text>\n'
|
||||
vrt += '</corpus>'
|
||||
def main():
|
||||
global stand_off_data
|
||||
global text
|
||||
|
||||
with open(args.output, 'w') as vrt_file:
|
||||
vrt_file.write(vrt)
|
||||
# Parse the given arguments
|
||||
parser = ArgumentParser(description='Create a vrt from JSON and txt')
|
||||
parser.add_argument('text', help='Path to txt file')
|
||||
parser.add_argument('stand_off_data', help='Path to JSON file')
|
||||
parser.add_argument('output', help='Path to vrt output file')
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.stand_off_data) as stand_of_data_file:
|
||||
stand_off_data = json.load(stand_of_data_file)
|
||||
|
||||
with open(args.text, "rb") as text_file:
|
||||
text_md5 = hashlib.md5()
|
||||
for chunk in iter(lambda: text_file.read(128 * text_md5.block_size), b''): # noqa
|
||||
text_md5.update(chunk)
|
||||
if text_md5.hexdigest() != stand_off_data['meta']['file']['md5']:
|
||||
raise Exception('md5 not equal')
|
||||
|
||||
with open(args.text, encoding=stand_off_data['meta']['file']['encoding']) as text_file: # noqa
|
||||
text = text_file.read()
|
||||
|
||||
vrt = ''
|
||||
vrt += '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>\n'
|
||||
vrt += '<corpus>\n'
|
||||
vrt += '<text>\n'
|
||||
vrt += meta_to_string()
|
||||
vrt += tags_to_string()
|
||||
vrt += annotations_to_string()
|
||||
vrt += '</text>\n'
|
||||
vrt += '</corpus>'
|
||||
|
||||
with open(args.output, 'w') as vrt_file:
|
||||
vrt_file.write(vrt)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
@ -6,7 +6,7 @@ import os
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
CONTAINER_IMAGE = 'gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/nlp:1.0.0'
|
||||
CONTAINER_IMAGE = 'gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/nlp:1.0.0b'
|
||||
CONTAINER_INPUT_DIR = '/input'
|
||||
CONTAINER_OUTPUT_DIR = '/output'
|
||||
CONTAINER_LOG_DIR = '/logs'
|
||||
|
Reference in New Issue
Block a user