nlp/spacy-nlp

353 lines
11 KiB
Plaintext
Raw Normal View History

2020-04-06 09:21:38 +02:00
#!/usr/bin/env python3.7
2020-04-03 17:35:05 +02:00
# coding=utf-8
from argparse import ArgumentParser
import chardet
2020-09-23 15:26:53 +02:00
import hashlib
import json
2020-09-23 15:26:53 +02:00
import os
2020-04-03 17:35:05 +02:00
import spacy
import textwrap
2021-07-13 16:31:53 +02:00
import uuid
spacy_models = {
spacy.info(pipeline)['lang']: pipeline
for pipeline in spacy.info()['pipelines']
}
2021-02-25 11:26:11 +01:00
2020-04-03 17:35:05 +02:00
# Parse the given arguments
parser = ArgumentParser(
description='Create annotations for a given plain txt file'
)
parser.add_argument(
'-i', '--input-file',
help='Input file'
)
parser.add_argument(
'-o', '--output-file',
help='Output file',
required=True
)
parser.add_argument(
'-m', '--model',
choices=spacy_models.keys(),
help='The model to be used',
required=True
)
parser.add_argument(
'-c', '--check-encoding',
action='store_true',
help='Check encoding of the input file, UTF-8 is used instead'
)
parser.add_argument(
'--id-prefix',
default='',
help='A prefix for all the ids within the stand off annotations'
)
2020-04-03 17:35:05 +02:00
args = parser.parse_args()
def generate_id(name):
return f'{args.id_prefix}{uuid.uuid3(uuid.NAMESPACE_DNS, name)}'
with open(args.input_file, "rb") as input_file:
2021-06-22 12:46:01 +02:00
if args.check_encoding:
encoding = chardet.detect(input_file.read())['encoding']
2021-06-22 12:46:01 +02:00
else:
encoding = 'utf-8'
input_file.seek(0)
text_md5 = hashlib.md5()
for chunk in iter(lambda: input_file.read(128 * text_md5.block_size), b''):
text_md5.update(chunk)
2020-05-20 14:55:52 +02:00
2020-04-03 17:35:05 +02:00
# Load the text contents from the input file
with open(args.input_file, encoding=encoding) as input_file:
# spaCy NLP is limited to strings with a maximum of 1 million characters at
2020-04-03 17:35:05 +02:00
# once. So we split it into suitable chunks.
text_chunks = textwrap.wrap(
input_file.read(),
1000000,
break_long_words=False,
break_on_hyphens=False,
drop_whitespace=False,
expand_tabs=False,
replace_whitespace=False
)
2020-04-03 17:35:05 +02:00
model_name = spacy_models[args.model]
nlp = spacy.load(model_name)
2020-04-03 17:35:05 +02:00
meta = {
'generator': {
'name': 'nopaque spacy NLP',
'version': '0.1.0',
'arguments': {
'check_encoding': args.check_encoding,
'model': args.model
}
},
'file': {
'encoding': encoding,
'md5': text_md5.hexdigest(),
'name': os.path.basename(args.input_file)
}
}
tags = []
token = {
'id': generate_id('token'),
'name': 'token',
'description': 'An individual token — i.e. a word, punctuation symbol, whitespace, etc.', # noqa
'properties': []
}
# TODO: Check if all languages support token.sentiment
token['properties'].append(
2021-07-13 16:31:53 +02:00
{
'id': generate_id('token.sentiment'),
'name': 'sentiment',
'description': 'A scalar value indicating the positivity or negativity of the token.' # noqa
}
)
if nlp.has_pipe('lemmatizer'):
token['properties'].append(
{
'id': generate_id('token.lemma'),
'name': 'lemma',
'description': 'The base form of the word'
}
)
if nlp.has_pipe('morphologizer') or nlp.has_pipe('tagger'):
token['properties'].append(
{
'id': generate_id('token.simple_pos'),
'name': 'simple_pos',
'description': 'The simple UPOS part-of-speech tag',
'labels': [
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'ADJ',
'description': 'adjective'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'ADP',
'description': 'adposition'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'ADV',
'description': 'adverb'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'AUX',
'description': 'auxiliary verb'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'CONJ',
'description': 'coordinating conjunction'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'DET',
'description': 'determiner'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'INTJ',
'description': 'interjection'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'NOUN',
'description': 'noun'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'NUM',
'description': 'numeral'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'PART',
'description': 'particle'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'PRON',
'description': 'pronoun'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'PROPN',
'description': 'proper noun'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'PUNCT',
'description': 'punctuation'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'SCONJ',
'description': 'subordinating conjunction'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'SYM',
'description': 'symbol'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'VERB',
'description': 'verb'
},
{
'id': generate_id('token.simple_pos=ADJ'),
'name': 'X',
'description': 'other'
}
]
}
)
if nlp.has_pipe('tagger'):
token['properties'].append(
{
'id': generate_id('token.pos'),
'name': 'pos',
'description': 'The detailed part-of-speech tag',
'labels': [
{
'id': generate_id(f'token.pos={label}'),
'name': label,
'description': spacy.explain(label) or ''
} for label in spacy.info(model_name)['labels']['tagger']
]
}
)
if nlp.has_pipe('ner') or nlp.has_pipe('entity_ruler'):
tags.append(
{
'id': generate_id('ent'),
'name': 'ent',
'description': 'Encodes the start and end of a named entity',
'properties': [
{
'id': generate_id('ent.type'),
'name': 'type',
'description': 'Label indicating the type of the entity',
'labels': [
{
'id': generate_id('ent.type={}'.format(label)),
'name': label,
'description': spacy.explain(label) or ''
} for label in spacy.info(model_name)['labels']['ner']
]
}
]
}
)
if nlp.has_pipe('parser') or nlp.has_pipe('senter') or nlp.has_pipe('sentencizer'): # noqa
# TODO: Check if all languages support sent.sentiment
tags.append(
{
'id': generate_id('s'),
'name': 's',
'description': 'Encodes the start and end of a sentence',
'properties': [
{
'id': generate_id('s.sentiment'),
'name': 'sentiment',
'description': 'A scalar value indicating the positivity or negativity of the sentence.' # noqa
}
]
}
)
tags.append(token)
annotations = []
chunk_offset = 0
while text_chunks:
text_chunk = text_chunks.pop(0)
doc = nlp(text_chunk)
if hasattr(doc, 'ents'):
for ent in doc.ents:
annotation = {
'start': ent.start_char + chunk_offset,
'end': ent.end_char + chunk_offset,
'tag_id': generate_id('ent'),
'properties': [
{
'property_id': generate_id('ent.type'),
'value': ent.label_
}
]
}
annotations.append(annotation)
if hasattr(doc, 'sents'):
for sent in doc.sents:
annotation = {
'start': sent.start_char + chunk_offset,
'end': sent.end_char + chunk_offset,
'tag_id': generate_id('s'),
'properties': []
}
if hasattr(sent, 'sentiment'):
annotation['properties'].append(
{
'property_id': generate_id('s.sentiment'),
'value': sent.sentiment
2021-07-13 16:31:53 +02:00
}
)
annotations.append(annotation)
for token in doc:
2021-07-13 16:31:53 +02:00
annotation = {
'start': token.idx + chunk_offset,
'end': token.idx + len(token.text) + chunk_offset,
'tag_id': generate_id('token'),
'properties': []
}
if hasattr(token, 'lemma_'):
annotation['properties'].append(
2021-07-13 16:31:53 +02:00
{
'property_id': generate_id('token.lemma'),
2021-07-13 16:31:53 +02:00
'value': token.lemma_
}
)
if hasattr(token, 'pos_'):
annotation['properties'].append(
2021-07-13 16:31:53 +02:00
{
'property_id': generate_id('token.simple_pos'),
2021-07-13 16:31:53 +02:00
'value': token.pos_
}
)
if hasattr(token, 'sentiment'):
annotation['properties'].append(
2021-07-13 16:31:53 +02:00
{
'property_id': generate_id('token.sentiment'),
'value': token.sentiment
2021-07-13 16:31:53 +02:00
}
)
if hasattr(token, 'tag_'):
annotation['properties'].append(
{
'property_id': generate_id('token.pos'),
'value': token.tag_
}
)
annotations.append(annotation)
2021-04-22 08:43:34 +02:00
chunk_offset += len(text_chunk)
text_chunk = None
with open(args.output_file, 'w') as output_file:
json.dump(
{'meta': meta, 'tags': tags, 'annotations': annotations},
output_file,
indent=4
)