nlp/spacy-nlp

114 lines
4.8 KiB
Plaintext
Raw Normal View History

2020-04-06 09:21:38 +02:00
#!/usr/bin/env python3.7
2020-04-03 17:35:05 +02:00
# coding=utf-8
from argparse import ArgumentParser
from xml.sax.saxutils import escape
import chardet
2020-09-23 15:26:53 +02:00
import hashlib
import os
2020-04-03 17:35:05 +02:00
import spacy
import textwrap
2020-09-23 15:46:43 +02:00
SPACY_MODELS = {'de': 'de_core_news_md',
'el': 'el_core_news_md',
'en': 'en_core_web_md',
'es': 'es_core_news_md',
'fr': 'fr_core_news_md',
'it': 'it_core_news_md',
'nl': 'nl_core_news_md',
'pt': 'pt_core_news_md'}
2020-09-23 15:26:53 +02:00
SPACY_MODELS_VERSION = os.environ.get('SPACY_MODELS_VERSION')
SPACY_VERSION = os.environ.get('SPACY_VERSION')
2020-04-03 17:35:05 +02:00
# Parse the given arguments
parser = ArgumentParser(description=('Tag a text file with spaCy and save it '
'as a verticalized text file.'))
2020-06-23 15:19:39 +02:00
parser.add_argument('-i', '--input', metavar='txt-sourcefile', required=True)
parser.add_argument('-o', '--output', metavar='vrt-destfile', required=True)
2020-09-23 15:26:53 +02:00
parser.add_argument('-l', '--language', choices=SPACY_MODELS.keys(), required=True) # noqa
2020-04-03 17:35:05 +02:00
parser.add_argument('--check-encoding', action='store_true')
args = parser.parse_args()
# If requested: Check the encoding of the text contents from the input file
# Else: Use utf-8
if args.check_encoding:
2020-06-23 15:19:39 +02:00
with open(args.input, "rb") as input_file:
2020-04-03 17:35:05 +02:00
bytes = input_file.read()
encoding = chardet.detect(bytes)['encoding']
else:
encoding = 'utf-8'
2020-05-20 14:55:52 +02:00
# hashing in chunks to avoid full RAM with huge files.
2020-06-23 15:19:39 +02:00
with open(args.input, 'rb') as input_file:
2020-09-23 15:26:53 +02:00
source_md5 = hashlib.md5()
for chunk in iter(lambda: input_file.read(128 * source_md5.block_size), b''):
source_md5.update(chunk)
source_md5 = source_md5.hexdigest()
2020-05-20 14:55:52 +02:00
2020-04-03 17:35:05 +02:00
# Load the text contents from the input file
2020-06-23 15:19:39 +02:00
with open(args.input, encoding=encoding) as input_file:
2020-04-03 17:35:05 +02:00
text = input_file.read()
# spaCys NLP is limited to strings with maximum 1 million characters at
# once. So we split it into suitable chunks.
2020-05-20 15:01:52 +02:00
text_chunks = textwrap.wrap(text, 1000000, break_long_words=False)
2020-04-03 17:35:05 +02:00
# the text variable potentially occupies a lot of system memory and is no
# longer needed...
del text
# Setup the spaCy toolkit by loading the chosen language model
2020-09-23 15:26:53 +02:00
model = SPACY_MODELS[args.language]
nlp = spacy.load(model)
2020-04-03 17:35:05 +02:00
# Create the output file in verticalized text format
# See: http://cwb.sourceforge.net/files/CWB_Encoding_Tutorial/node3.html
2020-06-23 15:19:39 +02:00
output_file_original_filename = args.output
output_file_stand_off_filename = args.output.replace('.vrt', '.stand-off.vrt')
common_xml = ('<?xml version="1.0" encoding="UTF-8" standalone="yes"?>\n'
+ '<corpus>\n'
+ '<text>\n'
2020-09-23 15:26:53 +02:00
+ '<nlp name="spaCy:{}"\n'.format(SPACY_VERSION)
+ ' model="{}:{}"\n'.format(model, SPACY_MODELS_VERSION)
+ ' source-md5="{}" />\n'.format(source_md5))
2020-05-20 14:55:52 +02:00
with open(output_file_original_filename, 'w+') as output_file_original, \
2020-05-20 15:01:52 +02:00
open(output_file_stand_off_filename, 'w+') as output_file_stand_off:
2020-05-20 14:55:52 +02:00
output_file_original.write(common_xml)
output_file_stand_off.write(common_xml)
2020-05-20 14:55:52 +02:00
text_offset = 0
for text_chunk in text_chunks:
doc = nlp(text_chunk)
for sent in doc.sents:
output_file_original.write('<s>\n')
output_file_stand_off.write('<s>\n')
space_flag = False
2020-04-03 17:35:05 +02:00
# Skip whitespace tokens
sent_no_space = [token for token in sent
if not token.text.isspace()]
2020-05-20 14:55:52 +02:00
# No space variant for cwb original .vrt file input.
for token in sent_no_space:
output_file_original.write('{}'.format(escape(token.text))
+ '\t{}'.format(escape(token.lemma_))
+ '\t{}'.format(token.pos_)
+ '\t{}'.format(token.tag_)
+ '\t{}\n'.format(token.ent_type_ or 'NULL'))
# Stand off variant with spaces.
for token in sent:
token_start = token.idx + text_offset
token_end = token.idx + len(token.text) + text_offset
output_file_stand_off.write('{}:{}'.format(token_start,
token_end)
+ '\t{}'.format(escape(token.lemma_))
+ '\t{}'.format(token.pos_)
+ '\t{}'.format(token.tag_)
+ '\t{}\n'.format(token.ent_type_ or 'NULL'))
output_file_original.write('</s>\n')
output_file_stand_off.write('</s>\n')
text_offset = token_end + 1
output_file_original.write('</text>\n</corpus>')
output_file_stand_off.write('</text>\n</corpus>')