# OCR - Optical Character Recognition This software implements a heavily parallelized pipeline to recognize text in PDF files. It is used for nopaque's OCR service but you can also use it standalone, for that purpose a convenient wrapper script is provided. ## Software used in this pipeline implementation - Official Debian Docker image (buster-slim): https://hub.docker.com/_/debian - Software from Debian Buster's free repositories - ocropy (1.3.3): https://github.com/ocropus/ocropy/releases/tag/v1.3.3 - pyFlow (1.1.20): https://github.com/Illumina/pyflow/releases/tag/v1.1.20 - Tesseract OCR (4.1.1): https://github.com/tesseract-ocr/tesseract/releases/tag/4.1.1 - tessdata_best (4.1.0): https://github.com/tesseract-ocr/tessdata_best/releases/tag/4.1.0 ## Use this image 1. Create input and output directories for the pipeline. ``` bash mkdir -p //input //output ``` 2. Place your PDF files inside `//input`. Files should all contain text of the same language. 3. Start the pipeline process. Check the pipeline help (`ocr --help`) for more details. ``` # Option one: Use the wrapper script ## Install the wrapper script (only on first run). Get it from https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr/-/raw/development/wrapper/ocr, make it executeable and add it to your ${PATH} cd / ocr -i input -l -o output # Option two: Classic Docker style docker run \ --rm \ -it \ -u $(id -u $USER):$(id -g $USER) \ -v //input:/input \ -v //output:/output \ gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/ocr:development \ -i /ocr_pipeline/input \ -l \ -o /ocr_pipeline/output \ ``` 4. Check your results in the `//output` directory.