2021-02-19 13:04:03 +01:00
# OCR - Optical Character Recognition
2019-04-02 15:43:41 +02:00
2021-02-19 13:04:03 +01:00
This software implements a heavily parallelized pipeline to recognize text in PDF files. It is used for nopaque's OCR service but you can also use it standalone, for that purpose a convenient wrapper script is provided.
2019-04-02 15:43:41 +02:00
2021-02-19 13:04:03 +01:00
## Software used in this pipeline implementation
2021-03-15 12:45:05 +01:00
- Official Debian Docker image (buster-slim): https://hub.docker.com/_/debian
- Software from Debian Buster's free repositories
2021-02-19 13:04:03 +01:00
- ocropy (1.3.3): https://github.com/ocropus/ocropy/releases/tag/v1.3.3
- pyFlow (1.1.20): https://github.com/Illumina/pyflow/releases/tag/v1.1.20
- Tesseract OCR (4.1.1): https://github.com/tesseract-ocr/tesseract/releases/tag/4.1.1
- tessdata_best (4.1.0): https://github.com/tesseract-ocr/tessdata_best/releases/tag/4.1.0
2019-05-16 13:22:29 +02:00
2021-02-19 13:04:03 +01:00
## Use this image
2019-05-16 13:22:29 +02:00
2021-02-19 13:04:03 +01:00
1. Create input and output directories for the pipeline.
``` bash
mkdir -p /< my_data_location > /input /< my_data_location > /output
2019-05-16 13:17:15 +02:00
```
2019-04-02 15:43:41 +02:00
2021-02-19 13:04:03 +01:00
2. Place your PDF files inside `/<my_data_location>/input` . Files should all contain text of the same language.
2019-04-02 15:43:41 +02:00
2021-03-26 10:03:59 +01:00
3. Start the pipeline process. Check the pipeline help (`ocr --help` ) for more details.
2019-05-16 13:17:15 +02:00
```
2021-02-19 13:04:03 +01:00
# Option one: Use the wrapper script
2021-03-15 12:45:05 +01:00
## Install the wrapper script (only on first run). Get it from https://gitlab.ub.uni-bielefeld.de/sfb1288inf/ocr/-/raw/development/wrapper/ocr, make it executeable and add it to your ${PATH}
2021-02-19 13:04:03 +01:00
cd /< my_data_location >
2021-02-23 11:11:50 +01:00
ocr -i input -l < language_code > -o output < optional_pipeline_arguments >
2019-04-02 15:43:41 +02:00
2021-02-19 13:04:03 +01:00
# Option two: Classic Docker style
2019-04-02 15:43:41 +02:00
docker run \
2019-05-16 13:17:15 +02:00
--rm \
-it \
2019-06-03 13:32:42 +02:00
-u $(id -u $USER):$(id -g $USER) \
2021-02-19 13:04:03 +01:00
-v /< my_data_location > /input:/input \
-v /< my_data_location > /output:/output \
2021-03-15 12:45:05 +01:00
gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/ocr:development \
-i /ocr_pipeline/input \
-l < language_code > \
-o /ocr_pipeline/output \
2021-02-19 13:04:03 +01:00
< optional_pipeline_arguments >
2019-04-02 15:43:41 +02:00
```
2019-05-20 12:06:57 +02:00
2021-02-19 13:04:03 +01:00
4. Check your results in the `/<my_data_location>/output` directory.