mirror of
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nopaque.git
synced 2025-01-24 00:30:35 +00:00
322 lines
14 KiB
Python
322 lines
14 KiB
Python
from .api import APIClient
|
|
from .constants import CONST_FIELD_MATCH, CONST_FIELD_MATCHEND
|
|
import time
|
|
|
|
|
|
class CQiWrapper(APIClient):
|
|
'''
|
|
CQIiWrapper object
|
|
|
|
High level wrapper that groups and renames some functions of CQiClient
|
|
for ease of use. Also structures recieved data into python dictionaries.
|
|
|
|
Keyword arguments:
|
|
host -- host IP adress or hostname wher the cqp server is running
|
|
port -- port of the cqp server
|
|
username -- username used to connect to the cqp server
|
|
password -- password of the user to connect to the cqp server
|
|
'''
|
|
|
|
SUBCORPUS_NAMES = []
|
|
|
|
def __init__(self, host='127.0.0.1', port=4877, username='anonymous',
|
|
password=''):
|
|
super(CQiWrapper, self).__init__(host, port=port)
|
|
self.username = username
|
|
self.password = password
|
|
|
|
def connect(self):
|
|
'''
|
|
Connect with CQP server
|
|
|
|
Connects via socket to the CQP server using the given username and
|
|
password from class initiation.
|
|
'''
|
|
self.ctrl_connect(self.username, self.password)
|
|
|
|
def __create_attribute_strings(self):
|
|
'''
|
|
Creates all needed attribute strings to query for word, lemma etc. in
|
|
the given corpus.
|
|
For example: CORPUS_NAME.word to query words
|
|
Automaticalle creates strings for all pre defined tags.
|
|
'''
|
|
p_attrs = self.corpus_positional_attributes(self.corpus_name)
|
|
struct_attrs = self.corpus_structural_attributes(self.corpus_name)
|
|
self.attr_strings = {}
|
|
self.attr_strings['positional_attrs'] = {}
|
|
self.attr_strings['struct_attrs'] = {}
|
|
for p_attr in p_attrs:
|
|
self.attr_strings['positional_attrs'][p_attr] = (self.corpus_name
|
|
+ '.'
|
|
+ p_attr)
|
|
for struct_attr in struct_attrs:
|
|
self.attr_strings['struct_attrs'][struct_attr] = (self.corpus_name
|
|
+ '.'
|
|
+ struct_attr)
|
|
print(('All positional and '
|
|
'structural attributes: {}').format(self.attr_strings))
|
|
|
|
def select_corpus(self, corpus_name):
|
|
'''
|
|
Checks if given copus name exists. If it exists set it as the main
|
|
corpus name used to create the needed query attribute strings like
|
|
CORPUS_NAME.word.
|
|
'''
|
|
if corpus_name in self.corpus_list_coprora():
|
|
self.corpus_name = corpus_name
|
|
self.__create_attribute_strings()
|
|
print('{} does exist.'.format(corpus_name))
|
|
else:
|
|
print('{} does not exist.'.format(corpus_name))
|
|
raise Exception('Given Corpus Name is not in corpora list.')
|
|
|
|
def disconnect(self):
|
|
'''
|
|
Disconnect from CQP server
|
|
|
|
Disconnects from the CQP server. Closes used socket after disconnect.
|
|
'''
|
|
self.ctrl_bye()
|
|
print('Disconnected from cqp server.')
|
|
|
|
def query_subcorpus(self, query, result_subcorpus_name='Query-results'):
|
|
'''
|
|
Create subcorpus
|
|
|
|
Input query will be used to create a subcorpus holding all cpos match
|
|
positions for that query.
|
|
|
|
Keyword arguments:
|
|
result_subcorpus_name -- set name of the subcorpus which holds all
|
|
cpos match positions, produced by the query
|
|
query -- query written in cqp query language
|
|
'''
|
|
self.query = query
|
|
self.cqp_query(self.corpus_name, result_subcorpus_name, query)
|
|
self.result_subcorpus = (self.corpus_name
|
|
+ ':'
|
|
+ result_subcorpus_name)
|
|
self.SUBCORPUS_NAMES.append(self.result_subcorpus)
|
|
self.match_count = self.cqp_subcorpus_size(self.result_subcorpus)
|
|
print('Nr of all matches is: {}'.format(self.match_count))
|
|
|
|
def show_subcorpora(self):
|
|
'''
|
|
Show all subcorpora currently saved by the cqp server.
|
|
'''
|
|
return self.cqp_list_subcorpora(self.corpus_name)
|
|
|
|
def show_query_results(self,
|
|
context_len=10,
|
|
result_len=1000,
|
|
result_offset=0):
|
|
'''
|
|
Show query results
|
|
|
|
Shows the actual matched strings produce by the query. Uses the cpos
|
|
match indexes to grab those strings. saves them into an orderd
|
|
dictionary. Also saves coresponding tags, lemmas and context. Gets those
|
|
informations using the corresponding cpos.
|
|
|
|
Keyword arguments:
|
|
context_len -- defines how many words before and after a match will be
|
|
shown (default 10)
|
|
result_len -- defines for how many matches all informations like lemma
|
|
and POS are being grabbed
|
|
result_offset -- defines the offset of the matches being requested. If
|
|
the offset is 100 informations for matches 100 to result_len are being
|
|
grabbed
|
|
'''
|
|
t0 = time.time()
|
|
self.context_len = context_len
|
|
self.corpus_max_len = self.cl_attribute_size(
|
|
self.attr_strings['positional_attrs']['word']
|
|
)
|
|
self.nr_matches = min(result_len, self.match_count)
|
|
if self.match_count == 0:
|
|
print('Query resulted in 0 matches.')
|
|
self.results = {'code': 0,
|
|
'result': {'matches': [],
|
|
'match_count': self.match_count,
|
|
'cpos_lookup': {},
|
|
'text_lookup': {}}
|
|
}
|
|
return self.results
|
|
else:
|
|
# Get match cpos boundries
|
|
# match_boundries shows the start and end cpos of one match as a
|
|
# pair of cpositions
|
|
# [(1355, 1357), (1477, 1479)] Example for two boundry pairs
|
|
offset_start = 0 if result_offset == 0 else result_offset
|
|
print('Offset start is: {}'.format(offset_start))
|
|
offset_end = min((self.nr_matches + result_offset - 1), self.match_count - 1)
|
|
print('Offset end is: {}'.format(offset_end))
|
|
match_boundaries = zip(self.cqp_dump_subcorpus(self.result_subcorpus,
|
|
CONST_FIELD_MATCH,
|
|
offset_start,
|
|
offset_end),
|
|
self.cqp_dump_subcorpus(self.result_subcorpus,
|
|
CONST_FIELD_MATCHEND,
|
|
offset_start,
|
|
offset_end))
|
|
|
|
# Generate all cpos between match boundries including start and end
|
|
# boundries.
|
|
# Also generate cpos for left and right context.
|
|
# Save those cpos into dict as lists for the keys 'lc', 'hit' and 'rc'
|
|
# Also collect all cpos together in one list for the final request of
|
|
# all cpos informations
|
|
all_matches = []
|
|
all_cpos = []
|
|
for start, end in match_boundaries:
|
|
end += 1
|
|
lc_cpos = list(range(max([0, start - self.context_len]), start))
|
|
lc = {'lc': lc_cpos}
|
|
match_cpos = list(range(start, end))
|
|
match = {'hit': match_cpos}
|
|
rc_cpos = list(range(end, min([self.corpus_max_len,
|
|
end + self.context_len])))
|
|
rc = {'rc': rc_cpos}
|
|
lc.update(match)
|
|
lc.update(rc)
|
|
all_cpos.extend(lc_cpos + match_cpos + rc_cpos)
|
|
all_matches.append(lc)
|
|
|
|
all_cpos = list(set(all_cpos)) # get rid of cpos duplicates
|
|
len_all_cpos = len(all_cpos)
|
|
t1 = time.time()
|
|
t_total = t1 - t0
|
|
print('Time to create all CPOS for query: {}'.format(t_total))
|
|
print('Requesting {} CPOS with one query.'.format(len_all_cpos))
|
|
|
|
# Get cpos informations like CORPUS_NAME.word or CORPUS_NAME.lemma for
|
|
# all cpos entries in all_cpos_list
|
|
# Also saves these informations into self.results dict
|
|
t2 = time.time()
|
|
all_cpos_infos, text_lookup = self.get_cpos_infos(all_cpos)
|
|
t3 = time.time()
|
|
t_final = t3 - t2
|
|
print('Got infos for {} CPOS in {} seconds:'.format(len_all_cpos,
|
|
t_final))
|
|
self.results = {'code': 0,
|
|
'result': {'matches': all_matches,
|
|
'match_count': self.match_count,
|
|
'cpos_lookup': all_cpos_infos,
|
|
'text_lookup': text_lookup}
|
|
}
|
|
return self.results
|
|
|
|
def get_cpos_infos(self, all_cpos):
|
|
'''
|
|
Get cpos informations like CORPUS_NAME.word or CORPUS_NAME.lemma for
|
|
all cpos entries specified in the parameter all_cpos.
|
|
'''
|
|
# Get all positional attribute informations
|
|
cpos_infos = {}
|
|
for p_attr_key in self.attr_strings['positional_attrs'].keys():
|
|
match_strs = self.cl_cpos2str(self.attr_strings['positional_attrs'][p_attr_key], all_cpos)
|
|
cpos_infos[p_attr_key] = match_strs
|
|
|
|
# Get all strucutural attribute informations
|
|
tmp_info = {}
|
|
structs_to_check = []
|
|
for struct_attr_key in self.attr_strings['struct_attrs'].keys():
|
|
key = self.attr_strings['struct_attrs'][struct_attr_key]
|
|
has_value = self.corpus_structural_attribute_has_values(key)
|
|
struct_ids = self.cl_cpos2struc(key, all_cpos)
|
|
if has_value is False: # Get IDs of strucutural elements without values (this means get IDs of XML tags. Struct elements only have values if they are XML attributes)
|
|
tmp_info[struct_attr_key] = []
|
|
for id in struct_ids:
|
|
tmp_info[struct_attr_key].append(id)
|
|
else:
|
|
structs_to_check.append({key: struct_attr_key})
|
|
print('Structs to check: {}'.format(structs_to_check))
|
|
struct_attr_values = list(tmp_info.values())
|
|
# print('Struct attr value list: {}'.format(struct_attr_values))
|
|
struct_attr_keys = list(tmp_info.keys())
|
|
# print('Struct attr key list: {}'.format(struct_attr_keys))
|
|
|
|
# Build textlookup dictionary
|
|
text_lookup_ids = list(set(struct_attr_values[0])) # every CPOS is associated with one text id. A set is build to only gather text_lookup informations for every unique text id
|
|
text_lookup = {} # final dict containing all info of one text identified by its id
|
|
for d in structs_to_check:
|
|
s_key, s_value = zip(*d.items())
|
|
print('dict entries: {}: {}'.format(s_key, s_value))
|
|
s_value = s_value[0].split('_', 1)[-1]
|
|
print('S_VALUE: {}'.format(s_value))
|
|
struct_values = self.cl_struc2str(s_key[0], text_lookup_ids)
|
|
print('Extracted Value with key {}: {}'.format(s_key[0], struct_values))
|
|
zipped = dict(zip(text_lookup_ids, struct_values))
|
|
for zip_key, zip_value in zipped.items():
|
|
print('Text id as key is: {}'.format(zip_key))
|
|
print('Value of this text is: {}'.format(zip_value))
|
|
check = text_lookup.get(zip_key)
|
|
print('check: {}'.format(check))
|
|
if check is None:
|
|
text_lookup[zip_key] = {s_value: zip_value}
|
|
else:
|
|
text_lookup[zip_key].update({s_value: zip_value})
|
|
|
|
# zip keys and values together
|
|
attr_values_list = []
|
|
attr_keys_list = []
|
|
for key in cpos_infos.keys():
|
|
attr_values_list.append(cpos_infos[key])
|
|
attr_keys_list.append(key)
|
|
attr_keys_list.extend(struct_attr_keys)
|
|
attr_values_list.extend(struct_attr_values)
|
|
joined_cpos_infos = zip(all_cpos, *attr_values_list)
|
|
dict_cpos_infos = {}
|
|
for info in joined_cpos_infos:
|
|
dict_cpos_infos[info[0]] = dict(zip(attr_keys_list, info[1:]))
|
|
return dict_cpos_infos, text_lookup
|
|
|
|
def get_sentences(self,
|
|
match_cpos_list,
|
|
get_surrounding_s=False,
|
|
l_r_s_context_additional_len=1):
|
|
'''
|
|
Get sentence informations for one match also set if and how much left
|
|
right context sentences should be grabbed surrounding the given CPOS.
|
|
'''
|
|
t0 = time.time()
|
|
key = self.corpus_name + '.s'
|
|
first_cpos, last_cpos = match_cpos_list[0], match_cpos_list[-1]
|
|
context_sentences = {}
|
|
s_ids = self.cl_cpos2struc(key, [first_cpos, last_cpos])
|
|
print('s id match: {}'.format(s_ids))
|
|
for s_id in s_ids:
|
|
s_start, s_end = self.cl_struc2cpos(key, s_id)
|
|
s_cpos = list(range(s_start, s_end + 1))
|
|
context_sentences[s_id] = s_cpos
|
|
if get_surrounding_s:
|
|
max_s_id = self.cl_attribute_size(key) - 1
|
|
print('max sid: {}'.format(max_s_id))
|
|
additional_s_ids = []
|
|
additional_s = list(range(max(s_ids[0]
|
|
- l_r_s_context_additional_len,
|
|
0),
|
|
min(s_ids[-1]
|
|
+ l_r_s_context_additional_len,
|
|
max_s_id) + 1))
|
|
additional_s_ids.extend(additional_s)
|
|
for s_id in additional_s_ids:
|
|
print('s id additional: {}'.format(s_id))
|
|
s_start, s_end = self.cl_struc2cpos(key, s_id)
|
|
s_cpos = list(range(s_start, s_end + 1))
|
|
context_sentences[s_id] = s_cpos
|
|
all_cpos = []
|
|
for key in context_sentences.keys():
|
|
all_cpos.extend(context_sentences[key])
|
|
all_cpos = list(set(all_cpos))
|
|
all_cpos_infos, text_lookup = self.get_cpos_infos(all_cpos)
|
|
t1 = time.time()
|
|
t_total = t1 - t0
|
|
print('Got all sentences informations in {} seconds'. format(t_total))
|
|
match_context = {'context_s_cpos': context_sentences,
|
|
'cpos_lookup': all_cpos_infos,
|
|
'text_lookup': text_lookup,
|
|
'match_cpos_list': match_cpos_list}
|
|
return match_context
|