#!/usr/bin/env python2.7 # coding=utf-8 """ nlp Usage: For usage instructions run with option --help Author: Patrick Jentsch """ import argparse import multiprocessing import os import sys from pyflow import WorkflowRunner def parse_arguments(): parser = argparse.ArgumentParser( "Performs NLP of documents utilizing spaCy. \ Output is .vrt." ) parser.add_argument("-i", dest="inputDir", help="Input directory.", required=True) parser.add_argument("-l", dest='lang', help="Language for NLP", required=True) parser.add_argument("-o", dest="outputDir", help="Output directory.", required=True) parser.add_argument("--nCores", default=multiprocessing.cpu_count(), dest="nCores", help="Total number of cores available.", required=False, type=int) return parser.parse_args() class NLPWorkflow(WorkflowRunner): def __init__(self, jobs, lang, nCores): self.jobs = jobs self.lang = lang self.nCores = nCores def workflow(self): ### # Task "mkdir_job": create output directories # Dependencies: None ### mkdir_jobs = [] mkdir_job_number = 0 for job in self.jobs: mkdir_job_number += 1 cmd = 'mkdir -p "%s"' % ( job["output_dir"] ) mkdir_jobs.append(self.addTask(label="mkdir_job_-_%i" % (mkdir_job_number), command=cmd)) ### # Task "spacy_nlp_job": perform NLP # Dependencies: mkdir_jobs ### self.waitForTasks() nlp_jobs = [] nlp_job_number = 0 for job in self.jobs: nlp_job_number += 1 cmd = 'spacy_nlp -i "%s" -o "%s" -l "%s"' % ( job["path"], os.path.join(job["output_dir"], os.path.basename(job["path"]).rsplit(".", 1)[0] + ".vrt"), self.lang ) nlp_jobs.append(self.addTask(label="nlp_job_-_%i" % (nlp_job_number), command=cmd, dependencies=mkdir_jobs)) ### # Task "zip_job": compress output # Dependencies: nlp_jobs ### zip_jobs = [] zip_job_number = 0 for job in self.jobs: zip_job_number += 1 cmd = 'zip -jqr %s %s' % ( job["output_dir"] + "_-_nlp", job["output_dir"] ) zip_jobs.append(self.addTask(label="zip_job_-_%i" % (zip_job_number), command=cmd, dependencies=nlp_jobs)) def analyze_jobs(inputDir, outputDir, level=1): jobs = [] if level > 2: return jobs for file in os.listdir(inputDir): if os.path.isdir(os.path.join(inputDir, file)): jobs += analyze_jobs( os.path.join(inputDir, file), os.path.join(outputDir, file), level + 1 ) elif file.endswith(".txt"): jobs.append({"path": os.path.join(inputDir, file), "output_dir": os.path.join(outputDir, file.rsplit(".", 1)[0])}) return jobs def main(): args = parse_arguments() wflow = NLPWorkflow( analyze_jobs(args.inputDir, args.outputDir), args.lang, args.nCores ) retval = wflow.run(nCores=args.nCores) sys.exit(retval) if __name__ == "__main__": main()