#!/usr/bin/env python2.7
# coding=utf-8
"""
nlp
Usage:  For usage instructions run with option --help
Author: Patrick Jentsch 
"""
import argparse
import multiprocessing
import os
import sys
from pyflow import WorkflowRunner
def parse_arguments():
    parser = argparse.ArgumentParser(
        "Performs NLP of documents utilizing spaCy. \
        Output is .vrt."
    )
    parser.add_argument("-i",
                        dest="inputDir",
                        help="Input directory.",
                        required=True)
    parser.add_argument("-l",
                        dest='lang',
                        help="Language for NLP",
                        required=True)
    parser.add_argument("-o",
                        dest="outputDir",
                        help="Output directory.",
                        required=True)
    parser.add_argument("--nCores",
                        default=multiprocessing.cpu_count(),
                        dest="nCores",
                        help="Total number of cores available.",
                        required=False,
                        type=int)
    return parser.parse_args()
class NLPWorkflow(WorkflowRunner):
    def __init__(self, jobs, lang, nCores):
        self.jobs = jobs
        self.lang = lang
        self.nCores = nCores
    def workflow(self):
        ###
        # Task "mkdir_job": create output directories
        # Dependencies: None
        ###
        mkdir_jobs = []
        mkdir_job_number = 0
        for job in self.jobs:
            mkdir_job_number += 1
            cmd = 'mkdir -p "%s"' % (
                job["output_dir"]
            )
            mkdir_jobs.append(self.addTask(label="mkdir_job_-_%i" % (mkdir_job_number), command=cmd))
        ###
        # Task "spacy_nlp_job": perform NLP
        # Dependencies: mkdir_jobs
        ###
        self.waitForTasks()
        nlp_jobs = []
        nlp_job_number = 0
        for job in self.jobs:
            nlp_job_number += 1
            cmd = 'spacy_nlp -i "%s" -o "%s" -l "%s"' % (
                job["path"],
                os.path.join(job["output_dir"], os.path.basename(job["path"]).rsplit(".", 1)[0] + ".vrt"),
                self.lang
            )
            nlp_jobs.append(self.addTask(label="nlp_job_-_%i" % (nlp_job_number), command=cmd, dependencies=mkdir_jobs))
        ###
        # Task "zip_job": compress output
        # Dependencies: nlp_jobs
        ###
        zip_jobs = []
        zip_job_number = 0
        for job in self.jobs:
            zip_job_number += 1
            cmd = 'zip -jqr %s %s' % (
                job["output_dir"] + "_-_nlp",
                job["output_dir"]
            )
            zip_jobs.append(self.addTask(label="zip_job_-_%i" % (zip_job_number), command=cmd, dependencies=nlp_jobs))
def analyze_jobs(inputDir, outputDir, level=1):
    jobs = []
    if level > 2:
        return jobs
    for file in os.listdir(inputDir):
        if os.path.isdir(os.path.join(inputDir, file)):
            jobs += analyze_jobs(
                os.path.join(inputDir, file),
                os.path.join(outputDir, file),
                level + 1
            )
        elif file.endswith(".txt"):
            jobs.append({"path": os.path.join(inputDir, file), "output_dir": os.path.join(outputDir, file.rsplit(".", 1)[0])})
    return jobs
def main():
    args = parse_arguments()
    wflow = NLPWorkflow(
        analyze_jobs(args.inputDir, args.outputDir),
        args.lang,
        args.nCores
    )
    retval = wflow.run(nCores=args.nCores)
    sys.exit(retval)
if __name__ == "__main__":
    main()