Compare commits

...

10 Commits

Author SHA1 Message Date
Inga Kirschnick
6c31788402 Visualization fix for real data 2023-06-22 16:38:06 +02:00
Inga Kirschnick
1c98c5070a Merge branch 'visualizations-update' of gitlab.ub.uni-bielefeld.de:sfb1288inf/nopaque into visualizations-update 2023-06-22 16:23:55 +02:00
Patrick Jentsch
1e33366820 fix cache loading string instead of parsing json 2023-06-22 16:44:29 +02:00
Patrick Jentsch
71013f1dc5 Add missing data and data cache to vis data generator function 2023-06-22 16:42:28 +02:00
Inga Kirschnick
142c82cc36 New data structure implementation 2023-06-22 16:23:46 +02:00
Patrick Jentsch
f84ac48975 Add test snippet for fast cpos boundary calculation for s_attrs 2023-06-22 14:19:14 +02:00
Patrick Jentsch
2739dc4b4f Remove debug code 2023-06-22 13:21:19 +02:00
Patrick Jentsch
eb2abf8282 Merge branch 'visualizations-update' of gitlab.ub.uni-bielefeld.de:sfb1288inf/nopaque into visualizations-update 2023-06-22 12:46:36 +02:00
Patrick Jentsch
529c778772 codestyle 2023-06-22 12:45:33 +02:00
Patrick Jentsch
be51044059 Fix cqi_over_socketio not handling cqi status correctly 2023-06-22 12:45:23 +02:00
6 changed files with 121973 additions and 17896 deletions

View File

@ -18,8 +18,8 @@ def cqi_connect(cqi_client: cqi.CQiClient):
'msg': 'Internal Server Error',
'payload': {'code': e.args[0], 'desc': e.args[1]}
}
payload = {'code': cqi_status,
'msg': cqi.api.specification.lookup[cqi_status]}
payload = {'code': cqi_status.code,
'msg': cqi_status.__class__.__name__}
return {'code': 200, 'msg': 'OK', 'payload': payload}
@ -28,8 +28,8 @@ def cqi_connect(cqi_client: cqi.CQiClient):
@cqi_over_socketio
def cqi_disconnect(cqi_client: cqi.CQiClient):
cqi_status = cqi_client.disconnect()
payload = {'code': cqi_status,
'msg': cqi.api.specification.lookup[cqi_status]}
payload = {'code': cqi_status.code,
'msg': cqi_status.__class__.__name__}
return {'code': 200, 'msg': 'OK', 'payload': payload}
@ -38,6 +38,6 @@ def cqi_disconnect(cqi_client: cqi.CQiClient):
@cqi_over_socketio
def cqi_ping(cqi_client: cqi.CQiClient):
cqi_status = cqi_client.ping()
payload = {'code': cqi_status,
'msg': cqi.api.specification.lookup[cqi_status]}
payload = {'code': cqi_status.code,
'msg': cqi_status.__class__.__name__}
return {'code': 200, 'msg': 'OK', 'payload': payload}

View File

@ -1,8 +1,9 @@
from collections import Counter
from flask import session
import cqi
import json
import math
import random
import os
from app import db, socketio
from app.decorators import socketio_login_required
from app.models import Corpus
@ -16,8 +17,8 @@ from .utils import cqi_over_socketio, lookups_by_cpos
def cqi_corpora_corpus_drop(cqi_client: cqi.CQiClient, corpus_name: str):
cqi_corpus = cqi_client.corpora.get(corpus_name)
cqi_status = cqi_corpus.drop()
payload = {'code': cqi_status,
'msg': cqi.api.specification.lookup[cqi_status]}
payload = {'code': cqi_status.code,
'msg': cqi_status.__class__.__name__}
return {'code': 200, 'msg': 'OK', 'payload': payload}
@ -27,8 +28,8 @@ def cqi_corpora_corpus_drop(cqi_client: cqi.CQiClient, corpus_name: str):
def cqi_corpora_corpus_query(cqi_client: cqi.CQiClient, corpus_name: str, subcorpus_name: str, query: str): # noqa
cqi_corpus = cqi_client.corpora.get(corpus_name)
cqi_status = cqi_corpus.query(subcorpus_name, query)
payload = {'code': cqi_status,
'msg': cqi.api.specification.lookup[cqi_status]}
payload = {'code': cqi_status.code,
'msg': cqi_status.__class__.__name__}
return {'code': 200, 'msg': 'OK', 'payload': payload}
@ -49,179 +50,109 @@ def cqi_corpora_corpus_update_db(cqi_client: cqi.CQiClient, corpus_name: str):
@socketio_login_required
@cqi_over_socketio
def cqi_corpora_corpus_get_visualization_data(cqi_client: cqi.CQiClient, corpus_name: str):
corpus = cqi_client.corpora.get(corpus_name)
# s_attrs = [x for x in corpus.structural_attributes.list() if not x.has_values]
# p_attrs = corpus.positional_attributes.list()
# payload = {
# 's_attrs': {},
# 'p_attrs': {},
# 'values': {
# 's_attrs': {},
# 'p_attrs': {}
# }
# }
# for s_attr in s_attrs:
# s_attr_lbound, s_attr_rbound = s_attr.cpos_by_id(text_id)
# s_attr_cpos_range = range(s_attr_lbound, s_attr_rbound + 1)
# payload['text']['lexicon'][text_id] = {
# 's_attrs': [s_attr_lbound, s_attr_rbound],
# 'counts': {
# 'token': s_attr_rbound - s_attr_lbound + 1
# },
# 'freqs': {
# p_attr.name: dict(Counter(p_attr.ids_by_cpos(list(s_attr_cpos_range))))
# for p_attr in p_attrs
# }
# }
# for p_attr in p_attrs:
# payload['p_attrs'] = dict(
corpus = Corpus.query.get(session['d']['corpus_id'])
visualization_data_file_path = os.path.join(corpus.path, 'cwb', 'visualization_data.json')
if os.path.exists(visualization_data_file_path):
with open(visualization_data_file_path, 'r') as f:
payload = json.load(f)
return {'code': 200, 'msg': 'OK', 'payload': payload}
cqi_corpus = cqi_client.corpora.get(corpus_name)
##########################################################################
# A faster way to get cpos boundaries for smaller s_attrs #
##########################################################################
# cqi_corpus.query('Last', '<s> []* </s>;')
# cqi_subcorpus = cqi_corpus.subcorpora.get('Last')
# print(cqi_subcorpus.size)
# first_match = 0
# last_match = cqi_subcorpus.attrs['size'] - 1
# match_boundaries = zip(
# list(range(first_match, last_match + 1)),
# cqi_subcorpus.dump(cqi_subcorpus.attrs['fields']['match'], first_match, last_match),
# cqi_subcorpus.dump(cqi_subcorpus.attrs['fields']['matchend'], first_match, last_match)
# )
# payload['values']['p_attrs'] = dict(
# zip(
# range(0, p_attr.lexicon_size),
# p_attr.values_by_ids(list(range(0, p_attr.lexicon_size)))
# )
# )
text = corpus.structural_attributes.get('text')
text_value_names = []
text_values = []
for text_sub_attr in corpus.structural_attributes.list(filters={'part_of': text}):
text_value_names.append(text_sub_attr.name[(len(text.name) + 1):])
text_values.append(text_sub_attr.values_by_ids(list(range(0, text.size))))
s = corpus.structural_attributes.get('s')
ent = corpus.structural_attributes.get('ent')
ent_value_names = []
ent_values = []
for ent_sub_attr in corpus.structural_attributes.list(filters={'part_of': ent}):
ent_value_names.append(ent_sub_attr.name[(len(ent.name) + 1):])
ent_values.append(ent_sub_attr.values_by_ids(list(range(0, ent.size))))
word = corpus.positional_attributes.get('word')
lemma = corpus.positional_attributes.get('lemma')
pos = corpus.positional_attributes.get('pos')
simple_pos = corpus.positional_attributes.get('simple_pos')
payload = {}
payload['corpus'] = {'lexicon': {}, 'values': []}
payload['corpus']['lexicon'][0] = {
'bounds': [0, corpus.size - 1],
# for x in match_boundaries:
# print(x)
cqi_p_attrs = {
p_attr.name: p_attr
for p_attr in cqi_corpus.positional_attributes.list()
}
cqi_s_attrs = {
s_attr.name: s_attr
for s_attr in cqi_corpus.structural_attributes.list()
}
payload = {
'corpus': {
'bounds': [0, cqi_corpus.size - 1],
'counts': {
'text': text.size,
's': s.size,
'ent': ent.size,
'token': corpus.size
'token': cqi_corpus.size
},
'freqs': {
'word': dict(
zip(
range(0, word.lexicon_size),
word.freqs_by_ids(list(range(0, word.lexicon_size)))
)
),
'lemma': dict(
zip(
range(0, lemma.lexicon_size),
lemma.freqs_by_ids(list(range(0, lemma.lexicon_size)))
)
),
'pos': dict(
zip(
range(0, pos.lexicon_size),
pos.freqs_by_ids(list(range(0, pos.lexicon_size)))
)
),
'simple_pos': dict(
zip(
range(0, simple_pos.lexicon_size),
simple_pos.freqs_by_ids(list(range(0, simple_pos.lexicon_size)))
)
)
}
}
payload['text'] = {'lexicon': {}, 'values': None}
for text_id in range(0, text.size):
text_lbound, text_rbound = text.cpos_by_id(text_id)
text_cpos_range = range(text_lbound, text_rbound + 1)
text_s_ids = s.ids_by_cpos(list(text_cpos_range))
text_ent_ids = ent.ids_by_cpos(list(text_cpos_range))
payload['text']['lexicon'][text_id] = {
'bounds': [text_lbound, text_rbound],
'counts': {
's': len([x for x in text_s_ids if x != -1]),
'ent': len([x for x in text_ent_ids if x != -1]),
'token': text_rbound - text_lbound + 1
'freqs': {}
},
'freqs': {
'word': dict(
Counter(word.ids_by_cpos(list(text_cpos_range)))
),
'lemma': dict(
Counter(lemma.ids_by_cpos(list(text_cpos_range)))
),
'pos': dict(
Counter(pos.ids_by_cpos(list(text_cpos_range)))
),
'simple_pos': dict(
Counter(simple_pos.ids_by_cpos(list(text_cpos_range)))
'p_attrs': {},
's_attrs': {},
'values': {'p_attrs': {}, 's_attrs': {}}
}
for p_attr in cqi_p_attrs.values():
payload['corpus']['freqs'][p_attr.name] = dict(
zip(
range(0, p_attr.lexicon_size),
p_attr.freqs_by_ids(list(range(0, p_attr.lexicon_size)))
)
}
}
payload['text']['values'] = text_value_names
payload['s'] = {'lexicon': {}, 'values': None}
for s_id in range(0, s.size):
payload['s']['lexicon'][s_id] = {
# 'bounds': s.cpos_by_id(s_id)
}
payload['s']['values'] = [
sub_attr.name[(len(s.name) + 1):]
for sub_attr in corpus.structural_attributes.list(filters={'part_of': s})
)
payload['p_attrs'][p_attr.name] = dict(
zip(
range(0, cqi_corpus.size),
p_attr.ids_by_cpos(list(range(0, cqi_corpus.size)))
)
)
payload['values']['p_attrs'][p_attr.name] = dict(
zip(
range(0, p_attr.lexicon_size),
p_attr.values_by_ids(list(range(0, p_attr.lexicon_size)))
)
)
for s_attr in cqi_s_attrs.values():
if s_attr.has_values:
continue
payload['corpus']['counts'][s_attr.name] = s_attr.size
payload['s_attrs'][s_attr.name] = {'lexicon': {}, 'values': None}
payload['values']['s_attrs'][s_attr.name] = {}
for id in range(0, s_attr.size):
payload['s_attrs'][s_attr.name]['lexicon'][id] = {}
lbound, rbound = s_attr.cpos_by_id(id)
payload['s_attrs'][s_attr.name]['lexicon'][id]['bounds'] = [lbound, rbound]
payload['s_attrs'][s_attr.name]['lexicon'][id]['counts'] = {}
payload['s_attrs'][s_attr.name]['lexicon'][id]['counts']['token'] = rbound - lbound + 1
if s_attr.name not in ['text', 's']:
continue
cpos_range = range(lbound, rbound + 1)
payload['s_attrs'][s_attr.name]['lexicon'][id]['counts']['ent'] = len({x for x in cqi_s_attrs['ent'].ids_by_cpos(list(cpos_range)) if x != -1})
if s_attr.name != 'text':
continue
payload['s_attrs'][s_attr.name]['lexicon'][id]['counts']['s'] = len({x for x in cqi_s_attrs['s'].ids_by_cpos(list(cpos_range)) if x != -1})
payload['s_attrs'][s_attr.name]['lexicon'][id]['freqs'] = {}
for p_attr in cqi_p_attrs.values():
payload['s_attrs'][s_attr.name]['lexicon'][id]['freqs'][p_attr.name] = dict(Counter(p_attr.ids_by_cpos(list(cpos_range))))
sub_s_attrs = cqi_corpus.structural_attributes.list(filters={'part_of': s_attr})
s_attr_value_names = [
sub_s_attr.name[(len(s_attr.name) + 1):]
for sub_s_attr in sub_s_attrs
]
payload['ent'] = {'lexicon': {}, 'values': None}
for ent_id in range(0, ent.size):
payload['ent']['lexicon'][ent_id] = {
# 'bounds': ent.cpos_by_id(ent_id)
sub_s_attr_values = [
sub_s_attr.values_by_ids(list(range(0, s_attr.size)))
for sub_s_attr in sub_s_attrs
]
payload['s_attrs'][s_attr.name]['values'] = s_attr_value_names
payload['values']['s_attrs'][s_attr.name] = {
s_attr_id: {
s_attr_value_name: sub_s_attr_values[s_attr_value_name_idx][s_attr_id_idx]
for s_attr_value_name_idx, s_attr_value_name in enumerate(
payload['s_attrs'][s_attr.name]['values']
)
} for s_attr_id_idx, s_attr_id in enumerate(range(0, s_attr.size))
}
payload['ent']['values'] = ent_value_names
payload['lookups'] = {
'corpus': {},
'text': {
text_id: {
text_value_name: text_values[text_value_name_idx][text_id_idx]
for text_value_name_idx, text_value_name in enumerate(text_value_names)
} for text_id_idx, text_id in enumerate(range(0, text.size))
},
's': {},
'ent': {
ent_id: {
ent_value_name: ent_values[ent_value_name_idx][ent_id_idx]
for ent_value_name_idx, ent_value_name in enumerate(ent_value_names)
} for ent_id_idx, ent_id in enumerate(range(0, ent.size))
},
'word': dict(
zip(
range(0, word.lexicon_size),
word.values_by_ids(list(range(0, word.lexicon_size)))
)
),
'lemma': dict(
zip(
range(0, lemma.lexicon_size),
lemma.values_by_ids(list(range(0, lemma.lexicon_size)))
)
),
'pos': dict(
zip(
range(0, pos.lexicon_size),
pos.values_by_ids(list(range(0, pos.lexicon_size)))
)
),
'simple_pos': dict(
zip(
range(0, simple_pos.lexicon_size),
simple_pos.values_by_ids(list(range(0, simple_pos.lexicon_size)))
)
)
}
# print(payload)
with open(visualization_data_file_path, 'w') as f:
json.dump(payload, f)
return {'code': 200, 'msg': 'OK', 'payload': payload}

View File

@ -32,8 +32,8 @@ def cqi_corpora_corpus_subcorpora_subcorpus_drop(cqi_client: cqi.CQiClient, corp
cqi_corpus = cqi_client.corpora.get(corpus_name)
cqi_subcorpus = cqi_corpus.subcorpora.get(subcorpus_name)
cqi_status = cqi_subcorpus.drop()
payload = {'code': cqi_status,
'msg': cqi.api.specification.lookup[cqi_status]}
payload = {'code': cqi_status.code,
'msg': cqi_status.__class__.__name__}
return {'code': 200, 'msg': 'OK', 'payload': payload}

File diff suppressed because it is too large Load Diff

View File

@ -34,26 +34,26 @@ class CorpusAnalysisApp {
.then(
cQiCorpus => {
this.data.corpus = {o: cQiCorpus};
// this.data.corpus.o.getVisualizationData()
// .then(
// (data) => {
// console.log(data);
// this.renderGeneralCorpusInfo(data);
// this.renderTextInfoList(data);
// this.renderTextProportionsGraphic(data);
// this.renderWordFrequenciesGraphic(data);
// this.renderBoundsGraphic(data);
// }
// );
this.data.corpus.o.getCorpusData()
.then(corpusData => {
console.log(corpusData);
this.renderGeneralCorpusInfo(corpusData);
this.renderTextInfoList(corpusData);
this.renderTextProportionsGraphic(corpusData);
this.renderFrequenciesGraphic(corpusData);
this.renderBoundsGraphic(corpusData);
});
this.data.corpus.o.getVisualizationData()
.then(
(data) => {
console.log(data);
this.renderGeneralCorpusInfo(data);
this.renderTextInfoList(data);
this.renderTextProportionsGraphic(data);
this.renderFrequenciesGraphic(data);
this.renderBoundsGraphic(data);
}
);
// this.data.corpus.o.getCorpusData()
// .then(corpusData => {
// console.log(corpusData);
// this.renderGeneralCorpusInfo(corpusData);
// this.renderTextInfoList(corpusData);
// this.renderTextProportionsGraphic(corpusData);
// this.renderFrequenciesGraphic(corpusData);
// this.renderBoundsGraphic(corpusData);
// });
// TODO: Don't do this hgere
cQiCorpus.updateDb();
this.enableActionElements();
@ -117,29 +117,29 @@ class CorpusAnalysisApp {
}
renderGeneralCorpusInfo(corpusData) {
document.querySelector('.corpus-num-tokens').innerHTML = corpusData.corpus.lexicon[0].counts.token;
document.querySelector('.corpus-num-s').innerHTML = corpusData.corpus.lexicon[0].counts.s;
document.querySelector('.corpus-num-unique-words').innerHTML = Object.entries(corpusData.corpus.lexicon[0].freqs.word).length;
document.querySelector('.corpus-num-unique-lemmas').innerHTML = Object.entries(corpusData.corpus.lexicon[0].freqs.lemma).length;
document.querySelector('.corpus-num-unique-pos').innerHTML = Object.entries(corpusData.corpus.lexicon[0].freqs.pos).length;
document.querySelector('.corpus-num-unique-simple-pos').innerHTML = Object.entries(corpusData.corpus.lexicon[0].freqs.simple_pos).length;
document.querySelector('.corpus-num-tokens').innerHTML = corpusData.corpus.counts.token;
document.querySelector('.corpus-num-s').innerHTML = corpusData.corpus.counts.s;
document.querySelector('.corpus-num-unique-words').innerHTML = Object.entries(corpusData.corpus.freqs.word).length;
document.querySelector('.corpus-num-unique-lemmas').innerHTML = Object.entries(corpusData.corpus.freqs.lemma).length;
document.querySelector('.corpus-num-unique-pos').innerHTML = Object.entries(corpusData.corpus.freqs.pos).length;
document.querySelector('.corpus-num-unique-simple-pos').innerHTML = Object.entries(corpusData.corpus.freqs.simple_pos).length;
}
renderTextInfoList(corpusData) {
let corpusTextInfoListElement = document.querySelector('.corpus-text-info-list');
let corpusTextInfoList = new CorpusTextInfoList(corpusTextInfoListElement);
let texts = corpusData.text.lexicon;
let texts = corpusData.s_attrs.text.lexicon;
let textData = [];
for (let i = 0; i < Object.entries(texts).length; i++) {
let resource = {
title: corpusData.lookups.text[i].title,
publishing_year: corpusData.lookups.text[i].publishing_year,
num_tokens: corpusData.text.lexicon[i].counts.token,
num_sentences: corpusData.text.lexicon[i].counts.s,
num_unique_words: Object.entries(corpusData.text.lexicon[i].freqs.word).length,
num_unique_lemmas: Object.entries(corpusData.text.lexicon[i].freqs.lemma).length,
num_unique_pos: Object.entries(corpusData.text.lexicon[i].freqs.pos).length,
num_unique_simple_pos: Object.entries(corpusData.text.lexicon[i].freqs.simple_pos).length
title: corpusData.values.s_attrs.text[i].title,
publishing_year: corpusData.values.s_attrs.text[i].publishing_year,
num_tokens: corpusData.s_attrs.text.lexicon[i].counts.token,
num_sentences: corpusData.s_attrs.text.lexicon[i].counts.s,
num_unique_words: Object.entries(corpusData.s_attrs.text.lexicon[i].freqs.word).length,
num_unique_lemmas: Object.entries(corpusData.s_attrs.text.lexicon[i].freqs.lemma).length,
num_unique_pos: Object.entries(corpusData.s_attrs.text.lexicon[i].freqs.pos).length,
num_unique_simple_pos: Object.entries(corpusData.s_attrs.text.lexicon[i].freqs.simple_pos).length
};
textData.push(resource);
@ -148,33 +148,29 @@ class CorpusAnalysisApp {
corpusTextInfoList.add(textData);
let textCountChipElement = document.querySelector('.text-count-chip');
textCountChipElement.innerHTML = `Text count: ${Object.values(corpusData.text.lexicon).length}`;
textCountChipElement.innerHTML = `Text count: ${corpusData.corpus.counts.text}`;
}
renderTextProportionsGraphic(corpusData) {
let textProportionsGraphicElement = document.querySelector('#text-proportions-graphic');
let texts = Object.entries(corpusData.text.lexicon);
let texts = Object.entries(corpusData.s_attrs.text.lexicon);
let graphData = [
{
values: texts.map(text => text[1].counts.token),
labels: texts.map(text => `${corpusData.lookups.text[text[0]].title} (${corpusData.lookups.text[text[0]].publishing_year})`),
labels: texts.map(text => `${corpusData.values.s_attrs.text[text[0]].title} (${corpusData.values.s_attrs.text[text[0]].publishing_year})`),
type: 'pie'
}
];
let graphLayout = {
// height: 600,
// width: 900
};
let config = {responsive: true};
Plotly.newPlot(textProportionsGraphicElement, graphData, graphLayout, config);
Plotly.newPlot(textProportionsGraphicElement, graphData, config);
}
renderFrequenciesGraphic(corpusData) {
let frequenciesTokenCategoryDropdownElement = document.querySelector('[data-target="frequencies-token-category-dropdown"]');
let frequenciesTokenCategoryDropdownListElement = document.querySelector("#frequencies-token-category-dropdown");
let frequenciesGraphicElement = document.querySelector('#frequencies-graphic');
let texts = Object.entries(corpusData.text.lexicon);
let texts = Object.entries(corpusData.s_attrs.text.lexicon);
frequenciesTokenCategoryDropdownListElement.addEventListener('click', (event) => {
@ -196,13 +192,13 @@ class CorpusAnalysisApp {
createFrequenciesGraphData(category, texts, corpusData) {
let graphData = [];
let sortedData = Object.entries(corpusData.corpus.lexicon[0].freqs[category]).sort((a, b) => b[1] - a[1]).slice(0, 5);
let sortedData = Object.entries(corpusData.corpus.freqs[category]).sort((a, b) => b[1] - a[1]).slice(0, 5);
for (let item of sortedData) {
let data = {
x: texts.map(text => `${corpusData.lookups.text[text[0]].title} (${corpusData.lookups.text[text[0]].publishing_year})`),
x: texts.map(text => `${corpusData.values.s_attrs.text[text[0]].title} (${corpusData.values.s_attrs.text[text[0]].publishing_year})`),
y: texts.map(text => text[1].freqs[category][item[0]]),
name: corpusData.lookups[category][item[0]],
name: corpusData.values.p_attrs[category][item[0]],
type: 'bar'
};
graphData.push(data);
@ -215,22 +211,20 @@ class CorpusAnalysisApp {
let boundsGraphicElement = document.querySelector('#bounds-graphic');
let graphData = [];
let texts = Object.entries(corpusData.text.lexicon);
let texts = Object.entries(corpusData.s_attrs.text.lexicon);
graphData = [{
type: 'bar',
x: texts.map(text => text[1].bounds[1] - text[1].bounds[0]),
y: texts.map(text => corpusData.lookups.text[text[0]].title),
y: texts.map(text => corpusData.values.s_attrs.text[text[0]].title),
base: texts.map(text => text[1].bounds[0]),
text: texts.map(text => `${corpusData.lookups.text[text[0]].title} (${corpusData.lookups.text[text[0]].publishing_year})`),
text: texts.map(text => `${corpusData.values.s_attrs.text[text[0]].title} (${corpusData.values.s_attrs.text[text[0]].publishing_year})`),
orientation: 'h',
hovertemplate: '%{base} - %{x} <br>%{y}',
showlegend: false
}];
let graphLayout = {
// height: 600,
// width: 2000,
barmode: 'stack',
type: 'bar',
showgrid: false,

View File

@ -103,6 +103,7 @@ class CorpusTextInfoList extends ResourceList {
if (sortElement !== clickedSortElement) {
sortElement.classList.remove('asc', 'desc');
sortElement.style.color = 'black';
sortElement.innerHTML = 'arrow_drop_down';
};
});
clickedSortElement.style.color = '#aa9cc9';