mirror of
				https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nopaque.git
				synced 2025-11-04 12:22:47 +00:00 
			
		
		
		
	visualization testing
This commit is contained in:
		@@ -101,164 +101,188 @@ class CQiCorpus {
 | 
			
		||||
  getCorpusData() {
 | 
			
		||||
    return new Promise((resolve, reject) => {
 | 
			
		||||
      const dummyData = {
 | 
			
		||||
          "num_tokens": 2000,    // number of tokens in the corpus
 | 
			
		||||
          "num_unique_words": 500,    // number of unique words in the corpus
 | 
			
		||||
          "num_unique_lemmas": 200,    // number of unique lemmas in the corpus
 | 
			
		||||
          "num_sentences": 90,    // number of sentences in the corpus
 | 
			
		||||
          "average_sentence_length": 11,   // average number of tokens per sentence in the corpus
 | 
			
		||||
          "num_ent_types": 30,    // number of entities in the corpus
 | 
			
		||||
          "num_unique_ent_types":10,
 | 
			
		||||
          "ent_type_freqs": {
 | 
			
		||||
            "str": 10,    // number of ent_types with ent_type "str"
 | 
			
		||||
            // ...
 | 
			
		||||
        },
 | 
			
		||||
          "texts": [
 | 
			
		||||
              {
 | 
			
		||||
                  "num_tokens": 11,    // number of tokens in the text
 | 
			
		||||
                  "num_unique_words": 12,    // number of unique words in the text
 | 
			
		||||
                  "word_freqs": {    // frequency of unique words in the text (sorted by frequency)
 | 
			
		||||
                    "str": "int",    // number of tokens with word "str"
 | 
			
		||||
                    // ...
 | 
			
		||||
          "corpus": {
 | 
			
		||||
              "bounds": [1, 689],
 | 
			
		||||
              "counts": {
 | 
			
		||||
                  "token": 743,
 | 
			
		||||
                  "ent": 321,
 | 
			
		||||
                  "s": 234
 | 
			
		||||
              },
 | 
			
		||||
              "freqs": {
 | 
			
		||||
                  "word": {
 | 
			
		||||
                      "1": 876,
 | 
			
		||||
                      "2": 234,
 | 
			
		||||
                      "3": 657
 | 
			
		||||
                  },
 | 
			
		||||
                  "num_unique_lemmas": 15,    // number of unique lemmas in the text
 | 
			
		||||
                  "lemma_freqs": {    // frequency of unique lemmas in the text (sorted by frequency)
 | 
			
		||||
                    "str": "int",    // number of tokens with lemma "str"
 | 
			
		||||
                    // ...
 | 
			
		||||
                  "lemma": {
 | 
			
		||||
                      "1": 543,
 | 
			
		||||
                      "2": 876,
 | 
			
		||||
                      "3": 321
 | 
			
		||||
                  },
 | 
			
		||||
                  "num_sentences": 4,    // number of sentences in the text
 | 
			
		||||
                  "average_sentence_length": 3,   // average number of tokens per sentence in the text
 | 
			
		||||
                  "num_ent_types": 12,    // number of ent_types in the text
 | 
			
		||||
                  "num_unique_ent_types": 28,    // number of unique ent_types in the text
 | 
			
		||||
                  "num_entities_by_id": {
 | 
			
		||||
                      "1": "int",    // number of entities with id 1
 | 
			
		||||
                      // ...
 | 
			
		||||
                  },            
 | 
			
		||||
                  "author": "Author Name",
 | 
			
		||||
                  "title": "Titel",
 | 
			
		||||
                  "publishing_year": 1950
 | 
			
		||||
              },
 | 
			
		||||
              {
 | 
			
		||||
                "num_tokens": 15,    // number of tokens in the text
 | 
			
		||||
                "num_unique_words": 4,    // number of unique words in the text
 | 
			
		||||
                "word_freqs": {    // frequency of unique words in the text (sorted by frequency)
 | 
			
		||||
                  "str": "int",    // number of tokens with word "str"
 | 
			
		||||
                  // ...
 | 
			
		||||
                },
 | 
			
		||||
                "num_unique_lemmas": 90,    // number of unique lemmas in the text
 | 
			
		||||
                "lemma_freqs": {    // frequency of unique lemmas in the text (sorted by frequency)
 | 
			
		||||
                  "str": "int",    // number of tokens with lemma "str"
 | 
			
		||||
                  // ...
 | 
			
		||||
                },
 | 
			
		||||
                "num_sentences": 11,    // number of sentences in the text
 | 
			
		||||
                "average_sentence_length": 3,   // average number of tokens per sentence in the text
 | 
			
		||||
                "num_ent_types": 4,    // number of ent_types in the text
 | 
			
		||||
                "num_unique_ent_types": 300,    // number of unique ent_types in the text
 | 
			
		||||
                "num_entities_by_id": {
 | 
			
		||||
                    "1": "int",    // number of entities with id 1
 | 
			
		||||
                    // ...
 | 
			
		||||
                },            
 | 
			
		||||
                "author": "Author Name",
 | 
			
		||||
                "title": "Titel 1",
 | 
			
		||||
                  "publishing_year": 1962
 | 
			
		||||
              },
 | 
			
		||||
              {
 | 
			
		||||
                "num_tokens": 11,    // number of tokens in the text
 | 
			
		||||
                "num_unique_words": 12,    // number of unique words in the text
 | 
			
		||||
                "word_freqs": {    // frequency of unique words in the text (sorted by frequency)
 | 
			
		||||
                  "str": "int",    // number of tokens with word "str"
 | 
			
		||||
                  // ...
 | 
			
		||||
                },
 | 
			
		||||
                "num_unique_lemmas": 64,    // number of unique lemmas in the text
 | 
			
		||||
                "lemma_freqs": {    // frequency of unique lemmas in the text (sorted by frequency)
 | 
			
		||||
                  "str": "int",    // number of tokens with lemma "str"
 | 
			
		||||
                  // ...
 | 
			
		||||
                },
 | 
			
		||||
                "num_sentences": 52,    // number of sentences in the text
 | 
			
		||||
                "average_sentence_length": 3,   // average number of tokens per sentence in the text
 | 
			
		||||
                "num_ent_types": 45,    // number of ent_types in the text
 | 
			
		||||
                "num_unique_ent_types": 68,    // number of unique ent_types in the text
 | 
			
		||||
                "num_entities_by_id": {
 | 
			
		||||
                    "1": "int",    // number of entities with id 1
 | 
			
		||||
                    // ...
 | 
			
		||||
                },            
 | 
			
		||||
                "author": "Author Name",
 | 
			
		||||
                "title": "Titel 2",
 | 
			
		||||
                "publishing_year": 1850
 | 
			
		||||
              },
 | 
			
		||||
              {
 | 
			
		||||
                "num_tokens": 56,    // number of tokens in the text
 | 
			
		||||
                "num_unique_words": 13,    // number of unique words in the text
 | 
			
		||||
                "word_freqs": {    // frequency of unique words in the text (sorted by frequency)
 | 
			
		||||
                  "str": "int",    // number of tokens with word "str"
 | 
			
		||||
                  // ...
 | 
			
		||||
                },
 | 
			
		||||
                "num_unique_lemmas": 43,    // number of unique lemmas in the text
 | 
			
		||||
                "lemma_freqs": {    // frequency of unique lemmas in the text (sorted by frequency)
 | 
			
		||||
                  "str": "int",    // number of tokens with lemma "str"
 | 
			
		||||
                  // ...
 | 
			
		||||
                },
 | 
			
		||||
                "num_sentences": 45,    // number of sentences in the text
 | 
			
		||||
                "average_sentence_length": 56,   // average number of tokens per sentence in the text
 | 
			
		||||
                "num_ent_types": 8792,    // number of ent_types in the text
 | 
			
		||||
                "num_unique_ent_types": 56758,    // number of unique ent_types in the text
 | 
			
		||||
                "num_entities_by_id": {
 | 
			
		||||
                    "1": "int",    // number of entities with id 1
 | 
			
		||||
                    // ...
 | 
			
		||||
                },            
 | 
			
		||||
                "author": "Author Name",
 | 
			
		||||
                "title": "Titel 3",
 | 
			
		||||
                "publishing_year": 1504
 | 
			
		||||
              },
 | 
			
		||||
              {
 | 
			
		||||
                "num_tokens": 54345,    // number of tokens in the text
 | 
			
		||||
                "num_unique_words": 561,    // number of unique words in the text
 | 
			
		||||
                "word_freqs": {    // frequency of unique words in the text (sorted by frequency)
 | 
			
		||||
                  "str": "int",    // number of tokens with word "str"
 | 
			
		||||
                  // ...
 | 
			
		||||
                },
 | 
			
		||||
                "num_unique_lemmas": 546,    // number of unique lemmas in the text
 | 
			
		||||
                "lemma_freqs": {    // frequency of unique lemmas in the text (sorted by frequency)
 | 
			
		||||
                  "str": "int",    // number of tokens with lemma "str"
 | 
			
		||||
                  // ...
 | 
			
		||||
                },
 | 
			
		||||
                "num_sentences": 5427,    // number of sentences in the text
 | 
			
		||||
                "average_sentence_length": 657,   // average number of tokens per sentence in the text
 | 
			
		||||
                "num_ent_types": 3465,    // number of ent_types in the text
 | 
			
		||||
                "num_unique_ent_types": 45,    // number of unique ent_types in the text
 | 
			
		||||
                "num_entities_by_id": {
 | 
			
		||||
                    "1": "int",    // number of entities with id 1
 | 
			
		||||
                    // ...
 | 
			
		||||
                },            
 | 
			
		||||
                "author": "Author Name",
 | 
			
		||||
                "title": "Titel 4",
 | 
			
		||||
                "publishing_year": 1712
 | 
			
		||||
              },                            
 | 
			
		||||
              {
 | 
			
		||||
                "num_tokens": 4354,    // number of tokens in the text
 | 
			
		||||
                "num_unique_words": 45234,    // number of unique words in the text
 | 
			
		||||
                "word_freqs": {    // frequency of unique words in the text (sorted by frequency)
 | 
			
		||||
                  "testwort": 50,    // number of tokens with word "str"
 | 
			
		||||
                  "testwort2": 1
 | 
			
		||||
                },
 | 
			
		||||
                "num_unique_lemmas": 15,    // number of unique lemmas in the text
 | 
			
		||||
                "lemma_freqs": {    // frequency of unique lemmas in the text (sorted by frequency)
 | 
			
		||||
                  "testlemma": 11,    // number of tokens with lemma "str"
 | 
			
		||||
                  "testlemma2": 1
 | 
			
		||||
                },
 | 
			
		||||
                "num_sentences": 90,    // number of sentences in the text
 | 
			
		||||
                "average_sentence_length": 7,   // average number of tokens per sentence in the text
 | 
			
		||||
                "num_ent_types": 19,
 | 
			
		||||
                "num_unique_ent_types": 5,    // number of unique ent_types in the text
 | 
			
		||||
                "num_entities_by_id": {
 | 
			
		||||
                    "1": "int",    // number of entities with id 1
 | 
			
		||||
                    // ...
 | 
			
		||||
                },            
 | 
			
		||||
                "author": "Author Name 2",
 | 
			
		||||
                "title": "Titel 5",
 | 
			
		||||
                "publishing_year": 1951
 | 
			
		||||
                  "pos": {
 | 
			
		||||
                      "1": 456,
 | 
			
		||||
                      "2": 789,
 | 
			
		||||
                      "3": 234
 | 
			
		||||
                  },
 | 
			
		||||
                  "simple_pos": {
 | 
			
		||||
                      "1": 987,
 | 
			
		||||
                      "2": 876,
 | 
			
		||||
                      "3": 543
 | 
			
		||||
                  },
 | 
			
		||||
                  "ent": {
 | 
			
		||||
                      "1": 654,
 | 
			
		||||
                      "2": 321,
 | 
			
		||||
                      "3": 987
 | 
			
		||||
                  }
 | 
			
		||||
              }
 | 
			
		||||
          ]
 | 
			
		||||
      };
 | 
			
		||||
          },
 | 
			
		||||
          "text": {
 | 
			
		||||
              "1": {
 | 
			
		||||
                  "bounds": [0, 435],
 | 
			
		||||
                  "counts": {
 | 
			
		||||
                      "token": 345,
 | 
			
		||||
                      "ent_type": 123,
 | 
			
		||||
                      "s": 89
 | 
			
		||||
                  },
 | 
			
		||||
                  "freqs": {
 | 
			
		||||
                      "word": {
 | 
			
		||||
                          "1": 25,
 | 
			
		||||
                          "2": 90,
 | 
			
		||||
                          "3": 200
 | 
			
		||||
                      },
 | 
			
		||||
                      "lemma": {
 | 
			
		||||
                          "1": 654,
 | 
			
		||||
                          "2": 321,
 | 
			
		||||
                          "3": 987
 | 
			
		||||
                      },
 | 
			
		||||
                      "pos": {
 | 
			
		||||
                          "1": 543,
 | 
			
		||||
                          "2": 876,
 | 
			
		||||
                          "3": 234
 | 
			
		||||
                      },
 | 
			
		||||
                      "simple_pos": {
 | 
			
		||||
                          "1": 987,
 | 
			
		||||
                          "2": 654,
 | 
			
		||||
                          "3": 321
 | 
			
		||||
                      },
 | 
			
		||||
                      "ent_type": {
 | 
			
		||||
                          "1": 234,
 | 
			
		||||
                          "2": 789,
 | 
			
		||||
                          "3": 543
 | 
			
		||||
                      }
 | 
			
		||||
                  },
 | 
			
		||||
                  "values": {
 | 
			
		||||
                      "author": 1,
 | 
			
		||||
                      "publishing_year":1950,
 | 
			
		||||
                      "title": 1
 | 
			
		||||
                  }
 | 
			
		||||
              },
 | 
			
		||||
              "2": {
 | 
			
		||||
                  "bounds": [435, 689],
 | 
			
		||||
                  "counts": {
 | 
			
		||||
                      "token": 389,
 | 
			
		||||
                      "ent_type": 198,
 | 
			
		||||
                      "s": 145
 | 
			
		||||
                  },
 | 
			
		||||
                  "freqs": {
 | 
			
		||||
                      "word": {
 | 
			
		||||
                          "1": 60,
 | 
			
		||||
                          "2": 70,
 | 
			
		||||
                          "3": 100
 | 
			
		||||
                      },
 | 
			
		||||
                      "lemma": {
 | 
			
		||||
                          "1": 654,
 | 
			
		||||
                          "2": 321,
 | 
			
		||||
                          "3": 987
 | 
			
		||||
                      },
 | 
			
		||||
                      "pos": {
 | 
			
		||||
                          "1": 543,
 | 
			
		||||
                          "2": 876,
 | 
			
		||||
                          "3": 234
 | 
			
		||||
                      },
 | 
			
		||||
                      "simple_pos": {
 | 
			
		||||
                          "1": 987,
 | 
			
		||||
                          "2": 654,
 | 
			
		||||
                          "3": 321
 | 
			
		||||
                      },
 | 
			
		||||
                      "ent_type": {
 | 
			
		||||
                          "1": 234,
 | 
			
		||||
                          "2": 789,
 | 
			
		||||
                          "3": 543
 | 
			
		||||
                      }
 | 
			
		||||
                  },
 | 
			
		||||
                  "values": {
 | 
			
		||||
                      "author": 2,
 | 
			
		||||
                      "publishing_year":1951,
 | 
			
		||||
                      "title": 2
 | 
			
		||||
                  }
 | 
			
		||||
              }
 | 
			
		||||
          },
 | 
			
		||||
          "s": {
 | 
			
		||||
              "1": {
 | 
			
		||||
                  "bounds": [345, 678]
 | 
			
		||||
              }
 | 
			
		||||
          },
 | 
			
		||||
          "ent": {
 | 
			
		||||
              "1": {
 | 
			
		||||
                  "bounds": [567, 890],
 | 
			
		||||
                  "values": {
 | 
			
		||||
                      "type": 789
 | 
			
		||||
                  }
 | 
			
		||||
              }
 | 
			
		||||
          },
 | 
			
		||||
          "token": {
 | 
			
		||||
              "310": {
 | 
			
		||||
                  "values": {
 | 
			
		||||
                      "word": 1,
 | 
			
		||||
                      "lemma": 2,
 | 
			
		||||
                      "pos": 1,
 | 
			
		||||
                      "simple_pos": 1
 | 
			
		||||
                  }
 | 
			
		||||
              }
 | 
			
		||||
          },
 | 
			
		||||
          "value_lookups": {
 | 
			
		||||
              "text": {
 | 
			
		||||
                  "author": {
 | 
			
		||||
                      "1": "John Doe",
 | 
			
		||||
                      "2": "Jane Smith"
 | 
			
		||||
                  },
 | 
			
		||||
                  "title": {
 | 
			
		||||
                      "1": "Test Title 1",
 | 
			
		||||
                      "2": "Test Title 2"
 | 
			
		||||
                  }
 | 
			
		||||
              },
 | 
			
		||||
              "ent": {
 | 
			
		||||
                  "type": {
 | 
			
		||||
                      "1": "Person",
 | 
			
		||||
                      "2": "Organization"
 | 
			
		||||
                  }
 | 
			
		||||
              },
 | 
			
		||||
              "token": {
 | 
			
		||||
                  "word": {
 | 
			
		||||
                      "1": "apple",
 | 
			
		||||
                      "2": "banana",
 | 
			
		||||
                      "3": "orange"
 | 
			
		||||
                  },
 | 
			
		||||
                  "lemma": {
 | 
			
		||||
                      "1": "run",
 | 
			
		||||
                      "2": "walk",
 | 
			
		||||
                      "3": "jump"
 | 
			
		||||
                  },
 | 
			
		||||
                  "pos": {
 | 
			
		||||
                      "1": "noun",
 | 
			
		||||
                      "2": "verb",
 | 
			
		||||
                      "3": "adjective"
 | 
			
		||||
                  },
 | 
			
		||||
                  "simple_pos": {
 | 
			
		||||
                      "1": "subject",
 | 
			
		||||
                      "2": "object",
 | 
			
		||||
                      "3": "predicate"
 | 
			
		||||
                  }
 | 
			
		||||
              }
 | 
			
		||||
          }
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
 | 
			
		||||
      resolve(dummyData);
 | 
			
		||||
      /*
 | 
			
		||||
 
 | 
			
		||||
@@ -39,6 +39,8 @@ class CorpusAnalysisApp {
 | 
			
		||||
              this.renderGeneralCorpusInfo(corpusData);
 | 
			
		||||
              this.renderTextInfoList(corpusData);
 | 
			
		||||
              this.renderTextProportionsGraphic(corpusData);
 | 
			
		||||
              this.renderWordFrequenciesGraphic(corpusData);
 | 
			
		||||
              this.renderWordDistributionsGraphic(corpusData);
 | 
			
		||||
            });
 | 
			
		||||
          // TODO: Don't do this hgere
 | 
			
		||||
          cQiCorpus.updateDb();
 | 
			
		||||
@@ -103,38 +105,85 @@ class CorpusAnalysisApp {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  renderGeneralCorpusInfo(corpusData) {
 | 
			
		||||
    let corpusGeneralInfoListElement = document.querySelector('.corpus-general-info-list');
 | 
			
		||||
    corpusGeneralInfoListElement.querySelector('.corpus-num-tokens').innerHTML = `<b>Number of tokens:</b> ${this.data.corpus.o.size}`;
 | 
			
		||||
    corpusGeneralInfoListElement.querySelector('.corpus-text-count').innerHTML = `<b>Corpus text count:</b> ${corpusData.texts.length}`;
 | 
			
		||||
    corpusGeneralInfoListElement.querySelector('.corpus-num-unique-words').innerHTML = `<b>Corpus unique word count:</b> ${corpusData.num_unique_words}`;
 | 
			
		||||
    corpusGeneralInfoListElement.querySelector('.corpus-num-unique-lemmas').innerHTML = `<b>Corpus unique lemma count:</b> ${corpusData.num_unique_lemmas}`;
 | 
			
		||||
    // corpusGeneralInfoListElement.querySelector('.corpus-most-frequent-words').innerHTML = `<b>Corpus most frequent words:</b> ${corpusData.most_frequent_words.join(', ');
 | 
			
		||||
    corpusGeneralInfoListElement.querySelector('.corpus-num-sentences').innerHTML = `<b>Corpus sentence count:</b> ${corpusData.num_sentences}`;
 | 
			
		||||
    corpusGeneralInfoListElement.querySelector('.corpus-average-sentence-length').innerHTML = `<b>Corpus average sentence length:</b> ${corpusData.average_sentence_length}`;
 | 
			
		||||
    corpusGeneralInfoListElement.querySelector('.corpus-num-ent-types').innerHTML = `<b>Corpus entity count:</b> ${corpusData.num_ent_types}`;
 | 
			
		||||
    corpusGeneralInfoListElement.querySelector('.corpus-num-unique-ent-types').innerHTML = `<b>Corpus unique entity count:</b> ${corpusData.num_unique_ent_types}`;
 | 
			
		||||
    document.querySelector('.corpus-num-tokens').innerHTML = corpusData.corpus.counts.token;
 | 
			
		||||
    document.querySelector('.corpus-num-s').innerHTML = corpusData.corpus.counts.s;
 | 
			
		||||
    // corpusGeneralInfoListElement.querySelector('.corpus-text-count').innerHTML = <b>Corpus text count:</b> ${Object.entries(corpusData.text).length;
 | 
			
		||||
    document.querySelector('.corpus-num-unique-words').innerHTML = Object.entries(corpusData.corpus.freqs.word).length;
 | 
			
		||||
    document.querySelector('.corpus-num-unique-lemmas').innerHTML = Object.entries(corpusData.corpus.freqs.lemma).length;
 | 
			
		||||
    document.querySelector('.corpus-num-unique-pos').innerHTML = Object.entries(corpusData.corpus.freqs.pos).length;
 | 
			
		||||
    document.querySelector('.corpus-num-unique-simple-pos').innerHTML = Object.entries(corpusData.corpus.freqs.simple_pos).length;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  renderTextInfoList(corpusData) {
 | 
			
		||||
    let corpusTextInfoListElement = document.querySelector('.corpus-text-info-list');
 | 
			
		||||
    let corpusTextInfoList = new CorpusTextInfoList(corpusTextInfoListElement);
 | 
			
		||||
    corpusTextInfoList.add(corpusData.texts);
 | 
			
		||||
    
 | 
			
		||||
    // let corpusTextInfoListElement = document.querySelector('.corpus-text-info-list');
 | 
			
		||||
    // let corpusTextInfoList = new CorpusTextInfoList(corpusTextInfoListElement);
 | 
			
		||||
    // for (let text of Object.values(corpusData.text)) {
 | 
			
		||||
    //   text.values.title = corpusData.value_lookups.text.title[text.values.title];
 | 
			
		||||
    // }
 | 
			
		||||
    // corpusTextInfoList.add(Object.values(corpusData.text));
 | 
			
		||||
 | 
			
		||||
    // let textCountChipElement = document.querySelector('.text-count-chip');
 | 
			
		||||
    // textCountChipElement.innerHTML = `Text count: ${Object.values(corpusData.text).length}`;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  renderTextProportionsGraphic(corpusData) {
 | 
			
		||||
    let textProportionsGraphicElement = document.querySelector('#text-proportions-graphic');
 | 
			
		||||
    let graphData = [
 | 
			
		||||
      {
 | 
			
		||||
        values: corpusData.texts.map(text => text.num_tokens),
 | 
			
		||||
        labels: corpusData.texts.map(text => `${text.title} (${text.publishing_year})`),
 | 
			
		||||
        type: 'pie'
 | 
			
		||||
      }
 | 
			
		||||
    ];
 | 
			
		||||
    let graphLayout = {
 | 
			
		||||
      height: 400,
 | 
			
		||||
      width: 500
 | 
			
		||||
    };
 | 
			
		||||
    Plotly.newPlot(textProportionsGraphicElement, graphData, graphLayout);
 | 
			
		||||
    // let textProportionsGraphicElement = document.querySelector('#text-proportions-graphic');
 | 
			
		||||
    // let texts = Object.values(corpusData.text);
 | 
			
		||||
    // let graphData = [
 | 
			
		||||
    //   {
 | 
			
		||||
    //     values: texts.map(text => text.counts.token),
 | 
			
		||||
    //     labels: texts.map(text => `${text.values.title} (${text.values.publishing_year})`),
 | 
			
		||||
    //     type: 'pie'
 | 
			
		||||
    //   }
 | 
			
		||||
    // ];
 | 
			
		||||
    // let graphLayout = {
 | 
			
		||||
    //   height: 400,
 | 
			
		||||
    //   width: 500
 | 
			
		||||
    // };
 | 
			
		||||
    // Plotly.newPlot(textProportionsGraphicElement, graphData, graphLayout);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  renderWordFrequenciesGraphic(corpusData) {
 | 
			
		||||
    // let wordFrequenciesGraphicElement = document.querySelector('#word-frequencies-graphic');
 | 
			
		||||
    // let words = Object.entries(corpusData.value_lookups.token.word);
 | 
			
		||||
    // let texts = Object.values(corpusData.text);
 | 
			
		||||
    // let graphData = [];
 | 
			
		||||
    // for (let word of words) {
 | 
			
		||||
    //   let data = {
 | 
			
		||||
    //     x: texts.map(text => `${text.values.title} (${text.values.publishing_year})`),
 | 
			
		||||
    //     y: texts.map(text => text.freqs.word[word[0]]),
 | 
			
		||||
    //     name: word[1],
 | 
			
		||||
    //     type: 'bar'
 | 
			
		||||
    //   };
 | 
			
		||||
    //   graphData.push(data);
 | 
			
		||||
    // }
 | 
			
		||||
 | 
			
		||||
    // let graphLayout = {
 | 
			
		||||
    //   height: 400,
 | 
			
		||||
    //   width: 500,
 | 
			
		||||
    //   barmode: 'stack',
 | 
			
		||||
    //   type: 'bar'
 | 
			
		||||
    // };
 | 
			
		||||
    // Plotly.newPlot(wordFrequenciesGraphicElement, graphData, graphLayout);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  renderWordDistributionsGraphic(corpusData) {
 | 
			
		||||
    // let wordDistributionGraphicElement = document.querySelector('#word-distributions-graphic');
 | 
			
		||||
    // var trace1 = {
 | 
			
		||||
    //   x: [1, 2, 3, 4],
 | 
			
		||||
    //   y: [10, 11, 12, 13],
 | 
			
		||||
    //   mode: 'markers',
 | 
			
		||||
    //   marker: {
 | 
			
		||||
    //     size: [40, 60, 80, 100]
 | 
			
		||||
    //   }
 | 
			
		||||
    // };
 | 
			
		||||
    // var data = [trace1];
 | 
			
		||||
    // var layout = {
 | 
			
		||||
    //   title: 'Marker Size',
 | 
			
		||||
    //   showlegend: false,
 | 
			
		||||
    //   height: 600,
 | 
			
		||||
    //   width: 600
 | 
			
		||||
    // };
 | 
			
		||||
    // Plotly.newPlot(wordDistributionGraphicElement, data, layout);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -29,11 +29,11 @@ class CorpusTextInfoList extends ResourceList {
 | 
			
		||||
        <tr class="list-item clickable hoverable">
 | 
			
		||||
          <td><span class="title"></span> (<span class="publishing_year"></span>)</td>
 | 
			
		||||
          <td><span class="num_tokens"></span></td>
 | 
			
		||||
          <td><span class="num_sentences"></span></td>
 | 
			
		||||
          <td><span class="num_unique_words"></span></td>
 | 
			
		||||
          <td><span class="num_unique_lemmas"></span></td>
 | 
			
		||||
          <td><span class="num_sentences"></span></td>
 | 
			
		||||
          <td><span class="average_sentence_length"></span></td>
 | 
			
		||||
          <td><span class="num_unique_ent_types"></span></td>
 | 
			
		||||
          <td><span class="num_unique_pos"></span></td>
 | 
			
		||||
          <td><span class="num_unique_simple_pos"></span></td>
 | 
			
		||||
        </tr>
 | 
			
		||||
      `.trim();
 | 
			
		||||
    }
 | 
			
		||||
@@ -44,11 +44,11 @@ class CorpusTextInfoList extends ResourceList {
 | 
			
		||||
      'title',
 | 
			
		||||
      'publishing_year',
 | 
			
		||||
      'num_tokens',
 | 
			
		||||
      'num_sentences',
 | 
			
		||||
      'num_unique_words',
 | 
			
		||||
      'num_unique_lemmas',
 | 
			
		||||
      'num_sentences',
 | 
			
		||||
      'average_sentence_length',
 | 
			
		||||
      'num_unique_ent_types'
 | 
			
		||||
      'num_unique_pos',
 | 
			
		||||
      'num_unique_simple_pos'
 | 
			
		||||
    ];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -68,11 +68,11 @@ class CorpusTextInfoList extends ResourceList {
 | 
			
		||||
          <tr>
 | 
			
		||||
            <th>Text<span class="sort right material-icons" data-sort="title" style="cursor:pointer; color:#aa9cc9">arrow_drop_down</span></th>
 | 
			
		||||
            <th>Number of tokens<span class="sort right material-icons" data-sort="num_tokens" style="cursor:pointer">arrow_drop_down</span></th>
 | 
			
		||||
            <th>Number of sentences<span class="sort right material-icons" data-sort="num_sentences" style="cursor:pointer">arrow_drop_down</span></th>
 | 
			
		||||
            <th>Number of unique words<span class="sort right material-icons" data-sort="num_unique_words" style="cursor:pointer">arrow_drop_down</span></th>
 | 
			
		||||
            <th>Number of unique lemmas<span class="sort right material-icons" data-sort="num_unique_lemmas" style="cursor:pointer">arrow_drop_down</span></th>
 | 
			
		||||
            <th>Number of sentences<span class="sort right material-icons" data-sort="num_sentences" style="cursor:pointer">arrow_drop_down</span></th>
 | 
			
		||||
            <th>Average sentence length<span class="sort right material-icons" data-sort="average_sentence_length" style="cursor:pointer">arrow_drop_down</span></th>
 | 
			
		||||
            <th>Number of unique entity types<span class="sort right material-icons" data-sort="num_unique_ent_types" style="cursor:pointer">arrow_drop_down</span></th>
 | 
			
		||||
            <th>Number of unique pos<span class="sort right material-icons" data-sort="num_unique_pos" style="cursor:pointer">arrow_drop_down</span></th>
 | 
			
		||||
            <th>Number of unique simple pos<span class="sort right material-icons" data-sort="num_unique_simple_pos" style="cursor:pointer">arrow_drop_down</span></th>
 | 
			
		||||
          </tr>
 | 
			
		||||
        </thead>
 | 
			
		||||
        <tbody class="list"></tbody>
 | 
			
		||||
@@ -83,14 +83,14 @@ class CorpusTextInfoList extends ResourceList {
 | 
			
		||||
 | 
			
		||||
  mapResourceToValue(corpusTextData) {
 | 
			
		||||
    return {
 | 
			
		||||
      title: corpusTextData.title,
 | 
			
		||||
      publishing_year: corpusTextData.publishing_year,
 | 
			
		||||
      num_tokens: corpusTextData.num_tokens,
 | 
			
		||||
      num_unique_words: corpusTextData.num_unique_words,
 | 
			
		||||
      num_unique_lemmas: corpusTextData.num_unique_lemmas,
 | 
			
		||||
      num_sentences: corpusTextData.num_sentences,
 | 
			
		||||
      average_sentence_length: corpusTextData.average_sentence_length,
 | 
			
		||||
      num_unique_ent_types: corpusTextData.num_unique_ent_types
 | 
			
		||||
      title: corpusTextData.values.title,
 | 
			
		||||
      publishing_year: corpusTextData.values.publishing_year,
 | 
			
		||||
      num_tokens: corpusTextData.counts.token,
 | 
			
		||||
      num_sentences: corpusTextData.counts.s,
 | 
			
		||||
      num_unique_words: Object.entries(corpusTextData.freqs.word).length,
 | 
			
		||||
      num_unique_lemmas: Object.entries(corpusTextData.freqs.lemma).length,
 | 
			
		||||
      num_unique_pos: Object.entries(corpusTextData.freqs.pos).length,
 | 
			
		||||
      num_unique_simple_pos: Object.entries(corpusTextData.freqs.simple_pos).length
 | 
			
		||||
    };
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user