mirror of
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
synced 2024-12-26 07:44:18 +00:00
144 lines
4.3 KiB
Python
Executable File
144 lines
4.3 KiB
Python
Executable File
#!/usr/bin/env python2.7
|
|
# coding=utf-8
|
|
|
|
"""
|
|
nlp
|
|
|
|
Usage: For usage instructions run with option --help
|
|
Author: Patrick Jentsch <p.jentsch@uni-bielefeld.de>
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import multiprocessing
|
|
import os
|
|
import sys
|
|
from pyflow import WorkflowRunner
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser(
|
|
description=('Performs NLP of documents utilizing spaCy. The results '
|
|
'are served as verticalized text files.')
|
|
)
|
|
parser.add_argument('-i', dest='input_dir', required=True)
|
|
parser.add_argument(
|
|
'-l',
|
|
choices=['de', 'el', 'en', 'es', 'fr', 'it', 'nl', 'pt'],
|
|
dest='lang',
|
|
required=True
|
|
)
|
|
parser.add_argument('-o', dest='output_dir', required=True)
|
|
parser.add_argument('--nCores',
|
|
default=min(4, multiprocessing.cpu_count()),
|
|
dest='n_cores',
|
|
help='total number of cores available',
|
|
required=False,
|
|
type=int)
|
|
parser.add_argument('--zip',
|
|
action='store_true',
|
|
default=False,
|
|
dest='zip',
|
|
help='package result files in zip bundles',
|
|
required=False)
|
|
return parser.parse_args()
|
|
|
|
|
|
class NLPWorkflow(WorkflowRunner):
|
|
def __init__(self, args):
|
|
self.jobs = analyze_jobs(args.input_dir, args.output_dir)
|
|
self.lang = args.lang
|
|
self.n_cores = args.n_cores
|
|
self.output_dir = args.output_dir
|
|
self.zip = args.zip
|
|
|
|
def workflow(self):
|
|
if len(self.jobs) == 0:
|
|
return
|
|
|
|
'''
|
|
' ##################################################
|
|
' # Create output directories #
|
|
' ##################################################
|
|
'''
|
|
create_output_directories_jobs = []
|
|
for index, job in enumerate(self.jobs):
|
|
cmd = 'mkdir -p "{}"'.format(job['output_dir'])
|
|
create_output_directories_jobs.append(
|
|
self.addTask(
|
|
command=cmd,
|
|
label='create_output_directories_job_-_{}'.format(index)
|
|
)
|
|
)
|
|
|
|
'''
|
|
' ##################################################
|
|
' # Natural language processing #
|
|
' ##################################################
|
|
'''
|
|
nlp_jobs = []
|
|
nlp_job_n_cores = min(
|
|
self.n_cores,
|
|
max(1, int(self.n_cores / len(self.jobs)))
|
|
)
|
|
for index, job in enumerate(self.jobs):
|
|
cmd = 'spacy_nlp -l "{}" "{}" "{}"'.format(
|
|
self.lang,
|
|
job['path'],
|
|
os.path.join(job['output_dir'], job['name'] + '.vrt')
|
|
)
|
|
nlp_jobs.append(
|
|
self.addTask(
|
|
command=cmd,
|
|
dependencies='create_output_directories_job_-_{}'.format(
|
|
index
|
|
),
|
|
label='nlp_job_-_{}'.format(index),
|
|
nCores=nlp_job_n_cores
|
|
)
|
|
)
|
|
|
|
if zip:
|
|
vrt_zip_jobs = []
|
|
vrt_zip_job_dependencies = nlp_jobs
|
|
cmd = 'cd "%s" && zip -m vrt.zip */*.vrt -x "pyflow.data*" && cd -' % (
|
|
self.output_dir
|
|
)
|
|
vrt_zip_jobs.append(
|
|
self.addTask(
|
|
command=cmd,
|
|
dependencies=vrt_zip_job_dependencies,
|
|
label='vrt_zip_job'
|
|
)
|
|
)
|
|
|
|
|
|
def analyze_jobs(input_dir, output_dir):
|
|
jobs = []
|
|
|
|
for file in os.listdir(input_dir):
|
|
if os.path.isdir(os.path.join(input_dir, file)):
|
|
jobs += analyze_jobs(os.path.join(input_dir, file),
|
|
os.path.join(output_dir, file))
|
|
elif file.endswith('.txt'):
|
|
jobs.append({'filename': file,
|
|
'name': file.rsplit('.', 1)[0],
|
|
'output_dir': os.path.join(output_dir, file),
|
|
'path': os.path.join(input_dir, file)})
|
|
|
|
return jobs
|
|
|
|
|
|
def main():
|
|
args = parse_arguments()
|
|
|
|
wflow = NLPWorkflow(args)
|
|
|
|
retval = wflow.run(dataDirRoot=args.output_dir, nCores=args.n_cores)
|
|
|
|
sys.exit(retval)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|