mirror of
				https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
				synced 2025-10-31 20:03:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			72 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3.5
 | |
| # coding=utf-8
 | |
| 
 | |
| import argparse
 | |
| import os
 | |
| import spacy
 | |
| import textwrap
 | |
| 
 | |
| parser = argparse.ArgumentParser(
 | |
|     description='Tag a text file with spaCy and save it as a verticalized text file.'
 | |
| )
 | |
| parser.add_argument(
 | |
|     'i',
 | |
|     metavar='txt-sourcefile',
 | |
| )
 | |
| parser.add_argument(
 | |
|     '-l',
 | |
|     choices=['de', 'el', 'en', 'es', 'fr', 'it', 'nl', 'pt'],
 | |
|     dest='lang',
 | |
|     required=True
 | |
| )
 | |
| parser.add_argument(
 | |
|     'o',
 | |
|     metavar='vrt-destfile',
 | |
| )
 | |
| args = parser.parse_args()
 | |
| 
 | |
| SPACY_MODELS = {
 | |
|     'de': 'de_core_news_sm', 'el': 'el_core_news_sm', 'en': 'en_core_web_sm',
 | |
|     'es': 'es_core_news_sm', 'fr': 'fr_core_news_sm', 'it': 'it_core_news_sm',
 | |
|     'nl': 'nl_core_news_sm', 'pt': 'pt_core_news_sm'
 | |
| }
 | |
| 
 | |
| # Set the language model for spacy
 | |
| nlp = spacy.load(SPACY_MODELS[args.lang])
 | |
| 
 | |
| # Read text from the input file and if neccessary split it into parts with a
 | |
| # length of less than 1 million characters.
 | |
| with open(args.i) as input_file:
 | |
|     text = input_file.read()
 | |
|     texts = textwrap.wrap(text, 1000000, break_long_words=False)
 | |
|     text = None
 | |
| 
 | |
| # Create and open the output file
 | |
| output_file = open(args.o, 'w+')
 | |
| 
 | |
| output_file.write(
 | |
|     '<?xml version="1.0" encoding="UTF-8"?>\n<corpus>\n<text id="%s">\n' % (
 | |
|         os.path.basename(args.i).rsplit(".", 1)[0]
 | |
|     )
 | |
| )
 | |
| for text in texts:
 | |
|     # Run spacy nlp over the text (partial string if above 1 million chars)
 | |
|     doc = nlp(text)
 | |
|     for sent in doc.sents:
 | |
|         output_file.write('<s>\n')
 | |
|         for token in sent:
 | |
|             # Skip whitespace tokens like "\n" or "\t"
 | |
|             if token.text.isspace():
 | |
|                 continue
 | |
|             # Write all information in .vrt style to the output file
 | |
|             # text, lemma, simple_pos, pos, ner
 | |
|             output_file.write(
 | |
|                 token.text + '\t' + token.lemma_ + '\t'
 | |
|                 + token.pos_ + '\t' + token.tag_ + '\t'
 | |
|                 + (token.ent_type_ if token.ent_type_ != '' else 'NULL') + '\n'
 | |
|             )
 | |
|         output_file.write('</s>\n')
 | |
| output_file.write('</text>\n</corpus>')
 | |
| 
 | |
| output_file.close()
 |