mirror of
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
synced 2025-01-13 13:10:34 +00:00
172 lines
5.7 KiB
Python
Executable File
172 lines
5.7 KiB
Python
Executable File
#!/usr/bin/env python3.7
|
|
# coding=utf-8
|
|
|
|
from argparse import ArgumentParser
|
|
import chardet
|
|
import hashlib
|
|
import json
|
|
import os
|
|
import spacy
|
|
import textwrap
|
|
|
|
|
|
spacy_models = {spacy.info(pipeline)['lang']: pipeline
|
|
for pipeline in spacy.info()['pipelines']}
|
|
|
|
|
|
# Parse the given arguments
|
|
parser = ArgumentParser(description='Create annotations for a given txt file')
|
|
parser.add_argument('input', metavar='Path to txt input file')
|
|
parser.add_argument('output', metavar='Path to JSON output file')
|
|
parser.add_argument('-l', '--language',
|
|
choices=spacy_models.keys(),
|
|
required=True)
|
|
parser.add_argument('-c', '--check-encoding', action='store_true')
|
|
args = parser.parse_args()
|
|
|
|
|
|
# If requested: Check the encoding of the text contents from the input file
|
|
# Else: Use utf-8
|
|
with open(args.input, "rb") as text_file:
|
|
if args.check_encoding:
|
|
encoding = chardet.detect(text_file.read())['encoding']
|
|
else:
|
|
encoding = 'utf-8'
|
|
text_md5 = hashlib.md5()
|
|
for chunk in iter(lambda: text_file.read(128 * text_md5.block_size), b''):
|
|
text_md5.update(chunk)
|
|
|
|
# Load the text contents from the input file
|
|
with open(args.input, encoding=encoding) as text_file:
|
|
# spaCy NLP is limited to strings with maximum 1 million characters at
|
|
# once. So we split it into suitable chunks.
|
|
text_chunks = textwrap.wrap(
|
|
text_file.read(),
|
|
1000000,
|
|
break_long_words=False,
|
|
break_on_hyphens=False,
|
|
drop_whitespace=False,
|
|
expand_tabs=False,
|
|
replace_whitespace=False
|
|
)
|
|
|
|
model = spacy_models[args.language]
|
|
nlp = spacy.load(model)
|
|
|
|
meta = {
|
|
'generator': {
|
|
'name': 'nopaque NLP service',
|
|
'version': '1.0.0',
|
|
'arguments': {
|
|
'check_encoding': args.check_encoding,
|
|
'language': args.language
|
|
}
|
|
},
|
|
'file': {
|
|
'encoding': encoding,
|
|
'md5': text_md5.hexdigest(),
|
|
'name': os.path.basename(args.input)
|
|
}
|
|
}
|
|
|
|
|
|
tags = {
|
|
'token': {
|
|
'description': '',
|
|
'properties': {
|
|
'lemma': {
|
|
'description': 'The base form of the word',
|
|
'flags': ['required'],
|
|
'tagset': None
|
|
},
|
|
'pos': {
|
|
'description': 'The detailed part-of-speech tag',
|
|
'flags': ['required'],
|
|
'tagset': {label: spacy.explain(label) for label in spacy.info(model)['labels']['tagger']} # noqa
|
|
},
|
|
'simple_pos': {
|
|
'description': 'The simple UPOS part-of-speech tag',
|
|
'flags': ['required'],
|
|
'tagset': {
|
|
'ADJ': 'adjective',
|
|
'ADP': 'adposition',
|
|
'ADV': 'adverb',
|
|
'AUX': 'auxiliary verb',
|
|
'CONJ': 'coordinating conjunction',
|
|
'DET': 'determiner',
|
|
'INTJ': 'interjection',
|
|
'NOUN': 'noun',
|
|
'NUM': 'numeral',
|
|
'PART': 'particle',
|
|
'PRON': 'pronoun',
|
|
'PROPN': 'proper noun',
|
|
'PUNCT': 'punctuation',
|
|
'SCONJ': 'subordinating conjunction',
|
|
'SYM': 'symbol',
|
|
'VERB': 'verb',
|
|
'X': 'other'
|
|
}
|
|
},
|
|
'ner': {
|
|
'description': 'Label indicating the type of the entity',
|
|
'tagset': {label: spacy.explain(label) for label in spacy.info(model)['labels']['ner']} # noqa
|
|
}
|
|
}
|
|
},
|
|
's': {
|
|
'description': 'Encodes the start and end of a sentence',
|
|
'properties': None
|
|
},
|
|
'ent': {
|
|
'description': 'Encodes the start and end of a named entity',
|
|
'properties': {
|
|
'type': {
|
|
'description': 'Label indicating the type of the entity',
|
|
'flags': ['required'],
|
|
'tagset': {label: spacy.explain(label) for label in spacy.info(model)['labels']['ner']} # noqa
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
annotations = []
|
|
|
|
chunk_offset = 0
|
|
while text_chunks:
|
|
text_chunk = text_chunks.pop(0)
|
|
doc = nlp(text_chunk)
|
|
for token in doc:
|
|
if token.is_space:
|
|
continue
|
|
if token.is_sent_start:
|
|
annotation = {'start': token.sent.start_char + chunk_offset,
|
|
'end': token.sent.end_char + chunk_offset,
|
|
'tag': 's'}
|
|
annotations.append(annotation)
|
|
# Check if the token is the start of an entity
|
|
if token.ent_iob == 3:
|
|
for ent_candidate in token.sent.ents:
|
|
if ent_candidate.start_char == token.idx:
|
|
ent = ent_candidate
|
|
annotation = {'start': ent.start_char + chunk_offset,
|
|
'end': ent.end_char + chunk_offset,
|
|
'tag': 'ent',
|
|
'properties': {'type': token.ent_type_}}
|
|
annotations.append(annotation)
|
|
break
|
|
annotation = {'start': token.idx + chunk_offset,
|
|
'end': token.idx + len(token.text) + chunk_offset,
|
|
'tag': 'token',
|
|
'properties': {'pos': token.tag_,
|
|
'lemma': token.lemma_,
|
|
'simple_pos': token.pos_}}
|
|
if token.ent_type_:
|
|
annotation['properties']['ner'] = token.ent_type_
|
|
annotations.append(annotation)
|
|
chunk_offset += len(text_chunk)
|
|
text_chunk = None
|
|
|
|
with open(args.output, 'w') as output_file:
|
|
json.dump({'meta': meta, 'tags': tags, 'annotations': annotations},
|
|
output_file, indent=4)
|