mirror of
				https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
				synced 2025-10-31 20:03:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			72 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3.5
 | |
| # coding=utf-8
 | |
| 
 | |
| from xml.sax.saxutils import escape
 | |
| import argparse
 | |
| import os
 | |
| import spacy
 | |
| import textwrap
 | |
| 
 | |
| parser = argparse.ArgumentParser(
 | |
|     description=('Tag a text file with spaCy and save it as a verticalized '
 | |
|                  'text file.')
 | |
| )
 | |
| parser.add_argument('i', metavar='txt-sourcefile')
 | |
| parser.add_argument('-l',
 | |
|                     choices=['de', 'el', 'en', 'es', 'fr', 'it', 'nl', 'pt'],
 | |
|                     dest='lang',
 | |
|                     required=True)
 | |
| parser.add_argument('o', metavar='vrt-destfile')
 | |
| args = parser.parse_args()
 | |
| 
 | |
| SPACY_MODELS = {'de': 'de_core_news_sm',
 | |
|                 'el': 'el_core_news_sm',
 | |
|                 'en': 'en_core_web_sm',
 | |
|                 'es': 'es_core_news_sm',
 | |
|                 'fr': 'fr_core_news_sm',
 | |
|                 'it': 'it_core_news_sm',
 | |
|                 'nl': 'nl_core_news_sm',
 | |
|                 'pt': 'pt_core_news_sm'}
 | |
| 
 | |
| # Set the language model for spacy
 | |
| nlp = spacy.load(SPACY_MODELS[args.lang])
 | |
| 
 | |
| # Read text from the input file and if neccessary split it into parts with a
 | |
| # length of less than 1 million characters.
 | |
| with open(args.i) as input_file:
 | |
|     text = input_file.read()
 | |
|     texts = textwrap.wrap(text, 1000000, break_long_words=False)
 | |
|     text = None
 | |
| 
 | |
| # Create and open the output file
 | |
| output_file = open(args.o, 'w+')
 | |
| 
 | |
| output_file.write('<?xml version="1.0" encoding="UTF-8"?>\n'
 | |
|                   '<corpus>\n'
 | |
|                   '<text>\n')
 | |
| for text in texts:
 | |
|     # Run spacy nlp over the text (partial string if above 1 million chars)
 | |
|     doc = nlp(text)
 | |
|     for sent in doc.sents:
 | |
|         output_file.write('<s>\n')
 | |
|         for token in sent:
 | |
|             # Skip whitespace tokens like "\n" or "\t"
 | |
|             if token.text.isspace():
 | |
|                 continue
 | |
|             # Write all information in .vrt style to the output file
 | |
|             # text, lemma, simple_pos, pos, ner
 | |
|             output_file.write(
 | |
|                 '{}\t{}\t{}\t{}\t{}\n'.format(
 | |
|                     escape(token.text),
 | |
|                     escape(token.lemma_),
 | |
|                     token.pos_,
 | |
|                     token.tag_,
 | |
|                     token.ent_type_ if token.ent_type_ != '' else 'NULL'
 | |
|                 )
 | |
|             )
 | |
|         output_file.write('</s>\n')
 | |
| output_file.write('</text>\n'
 | |
|                   '</corpus>')
 | |
| 
 | |
| output_file.close()
 |