mirror of
				https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
				synced 2025-10-31 09:52:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			116 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3.7
 | |
| # coding=utf-8
 | |
| 
 | |
| from argparse import ArgumentParser
 | |
| from xml.sax.saxutils import escape
 | |
| import chardet
 | |
| import spacy
 | |
| import textwrap
 | |
| import hashlib
 | |
| 
 | |
| 
 | |
| SPACY_MODELS = {'de': 'de_core_news_sm',
 | |
|                 'el': 'el_core_news_sm',
 | |
|                 'en': 'en_core_web_sm',
 | |
|                 'es': 'es_core_news_sm',
 | |
|                 'fr': 'fr_core_news_sm',
 | |
|                 'it': 'it_core_news_sm',
 | |
|                 'nl': 'nl_core_news_sm',
 | |
|                 'pt': 'pt_core_news_sm'}
 | |
| 
 | |
| 
 | |
| # Parse the given arguments
 | |
| parser = ArgumentParser(description=('Tag a text file with spaCy and save it '
 | |
|                                      'as a verticalized text file.'))
 | |
| parser.add_argument('-i', '--input', metavar='txt-sourcefile', required=True)
 | |
| parser.add_argument('-o', '--output', metavar='vrt-destfile', required=True)
 | |
| parser.add_argument('-l', '--language',
 | |
|                     choices=SPACY_MODELS.keys(),
 | |
|                     required=True)
 | |
| parser.add_argument('--check-encoding', action='store_true')
 | |
| args = parser.parse_args()
 | |
| 
 | |
| 
 | |
| # If requested: Check the encoding of the text contents from the input file
 | |
| # Else: Use utf-8
 | |
| if args.check_encoding:
 | |
|     with open(args.input, "rb") as input_file:
 | |
|         bytes = input_file.read()
 | |
|         encoding = chardet.detect(bytes)['encoding']
 | |
| else:
 | |
|     encoding = 'utf-8'
 | |
| 
 | |
| 
 | |
| # hashing in chunks to avoid full RAM with huge files.
 | |
| with open(args.input, 'rb') as input_file:
 | |
|     md5_hash = hashlib.md5()
 | |
|     for chunk in iter(lambda: input_file.read(128 * md5_hash.block_size), b''):
 | |
|         md5_hash.update(chunk)
 | |
|     md5_hash = md5_hash.hexdigest()
 | |
| 
 | |
| # Load the text contents from the input file
 | |
| with open(args.input, encoding=encoding) as input_file:
 | |
|     text = input_file.read()
 | |
|     # spaCys NLP is limited to strings with maximum 1 million characters at
 | |
|     # once. So we split it into suitable chunks.
 | |
|     text_chunks = textwrap.wrap(text, 1000000, break_long_words=False)
 | |
|     # the text variable potentially occupies a lot of system memory and is no
 | |
|     # longer needed...
 | |
|     del text
 | |
| 
 | |
| 
 | |
| # Setup the spaCy toolkit by loading the chosen language model
 | |
| nlp = spacy.load(SPACY_MODELS[args.language])
 | |
| 
 | |
| 
 | |
| # Create the output file in verticalized text format
 | |
| # See: http://cwb.sourceforge.net/files/CWB_Encoding_Tutorial/node3.html
 | |
| output_file_original_filename = args.output
 | |
| output_file_stand_off_filename = args.output.replace('.vrt', '.stand-off.vrt')
 | |
| common_xml = ('<?xml version="1.0" encoding="UTF-8" standalone="yes"?>\n'
 | |
|               + '<corpus>\n'
 | |
|               + '<text>\n'
 | |
|               + '<nlp name="spaCy"\n'
 | |
|               + '     version="{}"\n'.format(spacy.__version__)
 | |
|               + '     model="{}"\n'.format(SPACY_MODELS[args.language])
 | |
|               + '     model_version="{}"\n'.format(nlp.meta['version'])
 | |
|               + '     md5_hash_of_input="{}" />\n'.format(md5_hash))
 | |
| 
 | |
| with open(output_file_original_filename, 'w+') as output_file_original, \
 | |
|      open(output_file_stand_off_filename, 'w+') as output_file_stand_off:
 | |
| 
 | |
|     output_file_original.write(common_xml)
 | |
|     output_file_stand_off.write(common_xml)
 | |
|     text_offset = 0
 | |
|     for text_chunk in text_chunks:
 | |
|         doc = nlp(text_chunk)
 | |
|         for sent in doc.sents:
 | |
|             output_file_original.write('<s>\n')
 | |
|             output_file_stand_off.write('<s>\n')
 | |
|             space_flag = False
 | |
|             # Skip whitespace tokens
 | |
|             sent_no_space = [token for token in sent
 | |
|                              if not token.text.isspace()]
 | |
|             # No space variant for cwb original .vrt file input.
 | |
|             for token in sent_no_space:
 | |
|                 output_file_original.write('{}'.format(escape(token.text))
 | |
|                                            + '\t{}'.format(escape(token.lemma_))
 | |
|                                            + '\t{}'.format(token.pos_)
 | |
|                                            + '\t{}'.format(token.tag_)
 | |
|                                            + '\t{}\n'.format(token.ent_type_ or 'NULL'))
 | |
|             # Stand off variant with spaces.
 | |
|             for token in sent:
 | |
|                 token_start = token.idx + text_offset
 | |
|                 token_end = token.idx + len(token.text) + text_offset
 | |
|                 output_file_stand_off.write('{}:{}'.format(token_start,
 | |
|                                                            token_end)
 | |
|                                             + '\t{}'.format(escape(token.lemma_))
 | |
|                                             + '\t{}'.format(token.pos_)
 | |
|                                             + '\t{}'.format(token.tag_)
 | |
|                                             + '\t{}\n'.format(token.ent_type_ or 'NULL'))
 | |
|             output_file_original.write('</s>\n')
 | |
|             output_file_stand_off.write('</s>\n')
 | |
|         text_offset = token_end + 1
 | |
|     output_file_original.write('</text>\n</corpus>')
 | |
|     output_file_stand_off.write('</text>\n</corpus>')
 |