mirror of
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
synced 2025-01-22 06:40:33 +00:00
Compare commits
6 Commits
5139fd9727
...
a2e8e72e54
Author | SHA1 | Date | |
---|---|---|---|
|
a2e8e72e54 | ||
|
29ccfac4f6 | ||
|
0ba0c14b72 | ||
|
66516eeb89 | ||
|
a4b2fc3a65 | ||
|
4dea95a108 |
27
Dockerfile
27
Dockerfile
@ -9,7 +9,14 @@ ENV LANG=C.UTF-8
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install --no-install-recommends --yes \
|
||||
wget
|
||||
procps \
|
||||
python3.7 \
|
||||
python3-pip \
|
||||
wget \
|
||||
&& python3 -m pip install \
|
||||
chardet \
|
||||
setuptools \
|
||||
wheel
|
||||
|
||||
# Install the NLP pipeline and it's dependencies #
|
||||
## Install pyFlow ##
|
||||
@ -21,12 +28,12 @@ RUN wget --no-check-certificate --quiet \
|
||||
&& apt-get install --no-install-recommends --yes \
|
||||
python2.7 \
|
||||
&& python2.7 setup.py build install \
|
||||
&& cd .. \
|
||||
&& cd - > /dev/null \
|
||||
&& rm -r "pyflow-${PYFLOW_VERSION}" "pyflow-${PYFLOW_VERSION}.tar.gz"
|
||||
|
||||
|
||||
## Install spaCy ##
|
||||
ENV SPACY_VERSION=3.0.5
|
||||
ENV SPACY_VERSION=3.2.1
|
||||
RUN apt-get install --no-install-recommends --yes \
|
||||
python3.7 \
|
||||
python3-pip \
|
||||
@ -38,17 +45,15 @@ RUN apt-get install --no-install-recommends --yes \
|
||||
&& pip3 install "spacy==${SPACY_VERSION}"
|
||||
|
||||
|
||||
# Only models that include the following components are compatibel:
|
||||
# lemmatizer, ner, parser, senter, tagger,
|
||||
ENV SPACY_MODELS="de_core_news_md,en_core_web_md,it_core_news_md,nl_core_news_md,pl_core_news_md,zh_core_web_md"
|
||||
ENV SPACY_MODELS_VERSION=3.0.0
|
||||
ENV SPACY_MODELS="de_core_news_md,en_core_web_md,it_core_news_md,pl_core_news_md,zh_core_web_md"
|
||||
ENV SPACY_MODELS_VERSION=3.2.0
|
||||
RUN for spacy_model in $(echo ${SPACY_MODELS} | tr "," "\n"); do python3 -m spacy download "${spacy_model}-${SPACY_MODELS_VERSION}" --direct; done
|
||||
|
||||
|
||||
## Further dependencies ##
|
||||
RUN apt-get install --no-install-recommends --yes \
|
||||
procps \
|
||||
zip
|
||||
COPY packages .
|
||||
RUN cd stand-off-data-py \
|
||||
&& python3 -m pip install . \
|
||||
&& cd -
|
||||
|
||||
|
||||
## Install Pipeline ##
|
||||
|
21
LICENSE
Normal file
21
LICENSE
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2021 Bielefeld University - CRC 1288 - INF
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
61
README.md
61
README.md
@ -1,48 +1,41 @@
|
||||
# NLP - Natural Language Processing
|
||||
|
||||
This software implements a heavily parallelized pipeline for Natural Language Processing of text files. It is used for nopaque's NLP service but you can also use it standalone, for that purpose a convenient wrapper script is provided.
|
||||
This software implements a heavily parallelized pipeline for Natural Language Processing of text files. It is used for nopaque's NLP service but you can also use it standalone, for that purpose a convenient wrapper script is provided. The pipeline is designed to run on Linux operating systems, but with some tweaks it should also run on Windows with WSL installed.
|
||||
|
||||
## Software used in this pipeline implementation
|
||||
- Official Debian Docker image (buster-slim) and programs from its free repositories: https://hub.docker.com/_/debian
|
||||
|
||||
- Official Debian Docker image (buster-slim): https://hub.docker.com/_/debian
|
||||
- Software from Debian Buster's free repositories
|
||||
- pyFlow (1.1.20): https://github.com/Illumina/pyflow/releases/tag/v1.1.20
|
||||
- spaCy (3.0.5): https://github.com/tesseract-ocr/tesseract/releases/tag/4.1.1
|
||||
- spaCy medium sized models (3.0.0):
|
||||
- https://github.com/explosion/spacy-models/releases/tag/de_core_news_md-3.0.0
|
||||
- https://github.com/explosion/spacy-models/releases/tag/en_core_web_md-3.0.0
|
||||
- https://github.com/explosion/spacy-models/releases/tag/it_core_news_md-3.0.0
|
||||
- https://github.com/explosion/spacy-models/releases/tag/nl_core_news_md-3.0.0
|
||||
- https://github.com/explosion/spacy-models/releases/tag/pl_core_news_md-3.0.0
|
||||
- https://github.com/explosion/spacy-models/releases/tag/zh_core_web_md-3.0.0
|
||||
- spaCy (3.2.1): https://github.com/explosion/spaCy/releases/tag/v3.2.1
|
||||
- spaCy medium sized models (3.2.0):
|
||||
- https://github.com/explosion/spacy-models/releases/tag/de_core_news_md-3.2.0
|
||||
- https://github.com/explosion/spacy-models/releases/tag/en_core_web_md-3.2.0
|
||||
- https://github.com/explosion/spacy-models/releases/tag/it_core_news_md-3.2.0
|
||||
- https://github.com/explosion/spacy-models/releases/tag/nl_core_news_md-3.2.0
|
||||
- https://github.com/explosion/spacy-models/releases/tag/pl_core_news_md-3.2.0
|
||||
- https://github.com/explosion/spacy-models/releases/tag/zh_core_web_md-3.2.0
|
||||
|
||||
|
||||
## Use this image
|
||||
## Installation
|
||||
|
||||
1. Create input and output directories for the pipeline.
|
||||
``` bash
|
||||
mkdir -p /<my_data_location>/input /<my_data_location>/output
|
||||
```
|
||||
1. Install Docker and Python 3.
|
||||
2. Clone this repository: `git clone https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git`
|
||||
3. Build the Docker image: `docker build -t gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/nlp:v0.1.0 nlp`
|
||||
4. Add the wrapper script (`wrapper/nlp` relative to this README file) to your `${PATH}`.
|
||||
5. Create working directories for the pipeline: `mkdir -p /<my_data_location>/{input,output}`.
|
||||
|
||||
2. Place your text files inside `/<my_data_location>/input`. Files should all contain text of the same language.
|
||||
|
||||
## Use the Pipeline
|
||||
|
||||
1. Place your plain text files inside `/<my_data_location>/input`. Files should all contain text of the same language.
|
||||
2. Clear your `/<my_data_location>/output` directory.
|
||||
3. Start the pipeline process. Check the pipeline help (`nlp --help`) for more details.
|
||||
```
|
||||
# Option one: Use the wrapper script
|
||||
## Install the wrapper script (only on first run). Get it from https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp/-/raw/1.0.0/wrapper/nlp, make it executeable and add it to your ${PATH}
|
||||
```bash
|
||||
cd /<my_data_location>
|
||||
nlp -i input -l <language_code> -o output <optional_pipeline_arguments>
|
||||
|
||||
# Option two: Classic Docker style
|
||||
docker run \
|
||||
--rm \
|
||||
-it \
|
||||
-u $(id -u $USER):$(id -g $USER) \
|
||||
-v /<my_data_location>/input:/input \
|
||||
-v /<my_data_location>/output:/output \
|
||||
gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/nlp:1.0.0 \
|
||||
-i /input \
|
||||
-l <language_code>
|
||||
-o /output \
|
||||
<optional_pipeline_arguments>
|
||||
nlp \
|
||||
--input-dir input \
|
||||
--output-dir output \
|
||||
-m <model_code> <optional_pipeline_arguments>
|
||||
```
|
||||
|
||||
4. Check your results in the `/<my_data_location>/output` directory.
|
||||
|
332
nlp
332
nlp
@ -1,68 +1,141 @@
|
||||
#!/usr/bin/env python2.7
|
||||
# coding=utf-8
|
||||
|
||||
"""A NLP pipeline for text file processing."""
|
||||
|
||||
__author__ = 'Patrick Jentsch <p.jentsch@uni-bielefeld.de>,' \
|
||||
'Stephan Porada <porada@posteo.de>'
|
||||
__version__ = '1.0.0'
|
||||
''' A NLP pipeline for text file processing. '''
|
||||
__version__ = '0.1.0'
|
||||
|
||||
from argparse import ArgumentParser
|
||||
from pyflow import WorkflowRunner
|
||||
import multiprocessing
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
SPACY_MODELS = {'de': 'de_core_news_md',
|
||||
SPACY_MODELS = {
|
||||
'de': 'de_core_news_md',
|
||||
'en': 'en_core_web_md',
|
||||
'it': 'it_core_news_md',
|
||||
'nl': 'nl_core_news_md',
|
||||
'pl': 'pl_core_news_md',
|
||||
'zh': 'zh_core_web_md'}
|
||||
'zh': 'zh_core_web_md'
|
||||
}
|
||||
|
||||
|
||||
class NLPPipelineJob:
|
||||
"""An NLP pipeline job class
|
||||
class PipelineJob:
|
||||
'''
|
||||
NLP pipeline job class.
|
||||
|
||||
Each input file of the pipeline is represented as an NLP pipeline job,
|
||||
which holds all necessary information for the pipeline to process it.
|
||||
Each plain text input file of the pipeline is represented as an NLP
|
||||
pipeline job, which holds all necessary information for the pipeline to
|
||||
process it.
|
||||
|
||||
Arguments:
|
||||
file -- Path to the file
|
||||
output_dir -- Path to a directory, where job results a stored
|
||||
"""
|
||||
output_dir -- Path to a directory, where job results are stored
|
||||
'''
|
||||
|
||||
def __init__(self, file, output_dir):
|
||||
self.file = file
|
||||
self.name = os.path.basename(file).rsplit('.', 1)[0]
|
||||
self.name = os.path.basename(file)[:-4]
|
||||
self.output_dir = output_dir
|
||||
|
||||
|
||||
class NLPPipeline(WorkflowRunner):
|
||||
def __init__(self, input_dir, output_dir, check_encoding, lang, zip):
|
||||
class NLPWorkflow(WorkflowRunner):
|
||||
def __init__(self, job, model, check_encoding=False, id_prefix=''):
|
||||
self.job = job
|
||||
self.model = model
|
||||
self.check_encoding = check_encoding
|
||||
self.id_prefix = id_prefix
|
||||
|
||||
def workflow(self):
|
||||
'''
|
||||
' ##################################################
|
||||
' # spacy #
|
||||
' ##################################################
|
||||
'''
|
||||
n_cores = 1
|
||||
mem_mb = min(1024, self.getMemMb())
|
||||
cmd = 'spacy-nlp'
|
||||
cmd += ' --input-file "{}"'.format(self.job.file)
|
||||
cmd += ' --output-file "{}"'.format(
|
||||
os.path.join(self.job.output_dir, '{}.json'.format(self.job.name))
|
||||
)
|
||||
cmd += ' -m "{}"'.format(self.model)
|
||||
if self.check_encoding:
|
||||
cmd += ' --check-encoding'
|
||||
cmd += ' --id-prefix "{}"'.format(self.id_prefix)
|
||||
self.addTask(
|
||||
'spacy',
|
||||
command=cmd,
|
||||
memMb=mem_mb,
|
||||
nCores=n_cores
|
||||
)
|
||||
|
||||
|
||||
class CreateVrtWorkflow(WorkflowRunner):
|
||||
def __init__(self, job):
|
||||
self.job = job
|
||||
|
||||
def workflow(self):
|
||||
'''
|
||||
' ##################################################
|
||||
' # vrt-creator #
|
||||
' ##################################################
|
||||
'''
|
||||
n_cores = 1
|
||||
mem_mb = min(256, self.getMemMb())
|
||||
cmd = 'vrt-creator'
|
||||
cmd += ' --stand-off-data-file "{}"'.format(
|
||||
os.path.join(self.job.output_dir, '{}.json'.format(self.job.name))
|
||||
)
|
||||
cmd += ' --text-file "{}"'.format(self.job.file)
|
||||
cmd += ' --output-file "{}"'.format(
|
||||
os.path.join(self.job.output_dir, '{}.vrt'.format(self.job.name))
|
||||
)
|
||||
self.addTask(
|
||||
'vrt_creator',
|
||||
command=cmd,
|
||||
memMb=mem_mb,
|
||||
nCores=n_cores
|
||||
)
|
||||
|
||||
|
||||
class MainWorkflow(WorkflowRunner):
|
||||
def __init__(
|
||||
self,
|
||||
input_dir,
|
||||
model,
|
||||
output_dir,
|
||||
check_encoding=False,
|
||||
id_prefix=''
|
||||
):
|
||||
self.input_dir = input_dir
|
||||
self.model = model
|
||||
self.output_dir = output_dir
|
||||
self.check_encoding = check_encoding
|
||||
self.lang = lang
|
||||
self.zip = zip
|
||||
self.jobs = collect_jobs(self.input_dir, self.output_dir)
|
||||
self.id_prefix = id_prefix
|
||||
self.jobs = []
|
||||
|
||||
def collect_jobs(self):
|
||||
self.jobs = []
|
||||
for file in os.listdir(self.input_dir):
|
||||
if os.path.isdir(os.path.join(self.input_dir, file)):
|
||||
continue
|
||||
if not file.lower().endswith('.txt'):
|
||||
continue
|
||||
job = PipelineJob(
|
||||
os.path.join(self.input_dir, file),
|
||||
os.path.join(self.output_dir, file)
|
||||
)
|
||||
self.jobs.append(job)
|
||||
|
||||
def workflow(self):
|
||||
if not self.jobs:
|
||||
return
|
||||
|
||||
'''
|
||||
' ##################################################
|
||||
' # setup output directory #
|
||||
' ##################################################
|
||||
'''
|
||||
setup_output_directory_tasks = []
|
||||
for i, job in enumerate(self.jobs):
|
||||
cmd = 'mkdir -p "{}"'.format(job.output_dir)
|
||||
lbl = 'setup_output_directory_-_{}'.format(i)
|
||||
task = self.addTask(command=cmd, label=lbl)
|
||||
setup_output_directory_tasks.append(task)
|
||||
# Create output and temporary directories
|
||||
for job in self.jobs:
|
||||
os.mkdir(job.output_dir)
|
||||
|
||||
'''
|
||||
' ##################################################
|
||||
@ -70,104 +143,116 @@ class NLPPipeline(WorkflowRunner):
|
||||
' ##################################################
|
||||
'''
|
||||
nlp_tasks = []
|
||||
n_cores = max(1, int(self.getNCores() / len(self.jobs)))
|
||||
mem_mb = min(n_cores * 2048, int(self.getMemMb() / len(self.jobs)))
|
||||
for i, job in enumerate(self.jobs):
|
||||
output_file = os.path.join(job.output_dir, '{}.nopaque-stand-off.json'.format(job.name)) # noqa
|
||||
cmd = 'spacy-nlp'
|
||||
cmd += ' -l "{}"'.format(self.lang)
|
||||
cmd += ' --check-encoding' if self.check_encoding else ''
|
||||
cmd += ' "{}"'.format(job.file)
|
||||
cmd += ' "{}"'.format(output_file)
|
||||
deps = 'setup_output_directory_-_{}'.format(i)
|
||||
lbl = 'nlp_-_{}'.format(i)
|
||||
task = self.addTask(command=cmd, dependencies=deps, label=lbl,
|
||||
memMb=mem_mb, nCores=n_cores)
|
||||
task = self.addWorkflowTask(
|
||||
'nlp_-_{}'.format(i),
|
||||
NLPWorkflow(
|
||||
job,
|
||||
self.model,
|
||||
check_encoding=self.check_encoding,
|
||||
id_prefix=self.id_prefix
|
||||
)
|
||||
)
|
||||
nlp_tasks.append(task)
|
||||
|
||||
'''
|
||||
' ##################################################
|
||||
' # vrt creation #
|
||||
' # create vrt #
|
||||
' ##################################################
|
||||
'''
|
||||
vrt_creation_tasks = []
|
||||
create_vrt_tasks = []
|
||||
for i, job in enumerate(self.jobs):
|
||||
output_file = os.path.join(job.output_dir, '{}.vrt'.format(job.name)) # noqa
|
||||
nlp_file = os.path.join(job.output_dir, '{}.nopaque-stand-off.json'.format(job.name)) # noqa
|
||||
cmd = 'vrt-creator'
|
||||
cmd += ' "{}"'.format(job.file)
|
||||
cmd += ' "{}"'.format(nlp_file)
|
||||
cmd += ' "{}"'.format(output_file)
|
||||
deps = 'nlp_-_{}'.format(i)
|
||||
lbl = 'vrt_creation_-_{}'.format(i)
|
||||
task = self.addTask(command=cmd, dependencies=deps, label=lbl)
|
||||
vrt_creation_tasks.append(task)
|
||||
task = self.addWorkflowTask(
|
||||
'create_vrt_-_{}'.format(i),
|
||||
CreateVrtWorkflow(job),
|
||||
dependencies='nlp_-_{}'.format(i)
|
||||
)
|
||||
create_vrt_tasks.append(task)
|
||||
|
||||
'''
|
||||
' ##################################################
|
||||
' # zip creation #
|
||||
' ##################################################
|
||||
'''
|
||||
zip_creation_tasks = []
|
||||
if self.zip is not None:
|
||||
cmd = 'cd "{}"'.format(self.output_dir)
|
||||
cmd += ' && '
|
||||
cmd += 'zip'
|
||||
cmd += ' -r'
|
||||
cmd += ' "{}.zip" .'.format(self.zip)
|
||||
cmd += ' -x "pyflow.data*"'
|
||||
cmd += ' -i "*.vrt" "*.json"'
|
||||
cmd += ' && '
|
||||
cmd += 'cd -'
|
||||
deps = vrt_creation_tasks
|
||||
lbl = 'zip_creation'
|
||||
task = self.addTask(command=cmd, dependencies=deps, label=lbl)
|
||||
zip_creation_tasks.append(task)
|
||||
|
||||
|
||||
def collect_jobs(input_dir, output_dir):
|
||||
jobs = []
|
||||
for file in os.listdir(input_dir):
|
||||
if os.path.isdir(os.path.join(input_dir, file)):
|
||||
continue
|
||||
if file.lower().endswith('.txt'):
|
||||
job = NLPPipelineJob(os.path.join(input_dir, file),
|
||||
os.path.join(output_dir, file))
|
||||
jobs.append(job)
|
||||
return jobs
|
||||
self.waitForTasks()
|
||||
outputs = []
|
||||
for job in self.jobs:
|
||||
# Track output files
|
||||
relative_output_dir = os.path.relpath(
|
||||
job.output_dir,
|
||||
start=self.output_dir
|
||||
)
|
||||
outputs.append(
|
||||
{
|
||||
'description': 'JSON stand off data',
|
||||
'file': os.path.join(
|
||||
relative_output_dir,
|
||||
'{}.json'.format(job.name)
|
||||
),
|
||||
'mimetype': 'application/json'
|
||||
}
|
||||
)
|
||||
outputs.append(
|
||||
{
|
||||
'description': 'CWB vrt file',
|
||||
'file': os.path.join(
|
||||
relative_output_dir,
|
||||
'{}.vrt'.format(job.name)
|
||||
),
|
||||
'mimetype': 'application/vrt+xml'
|
||||
}
|
||||
)
|
||||
with open(os.path.join(self.output_dir, 'outputs.json'), 'w') as f:
|
||||
json.dump(outputs, f, indent=4)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = ArgumentParser(description='NLP pipeline for TXT file processing',
|
||||
prog='NLP pipeline')
|
||||
parser.add_argument('-i', '--input-dir',
|
||||
parser = ArgumentParser(
|
||||
description='NLP pipeline for plain text file processing'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-i', '--input-dir',
|
||||
help='Input directory',
|
||||
required=True)
|
||||
parser.add_argument('-o', '--output-dir',
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
'-o', '--output-dir',
|
||||
help='Output directory',
|
||||
required=True)
|
||||
parser.add_argument('-l', '--language',
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
'-m', '--model',
|
||||
choices=SPACY_MODELS.keys(),
|
||||
help='Language of the input (2-character ISO 639-1 language codes)', # noqa
|
||||
required=True)
|
||||
parser.add_argument('--check-encoding',
|
||||
help='The model to be used',
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
'--check-encoding',
|
||||
action='store_true',
|
||||
help='Check encoding of the input file, UTF-8 is used instead') # noqa
|
||||
parser.add_argument('--log-dir',
|
||||
help='Logging directory')
|
||||
parser.add_argument('--mem-mb',
|
||||
help='Amount of system memory to be used (Default: min(--n-cores * 2048, available system memory))', # noqa
|
||||
type=int)
|
||||
parser.add_argument('--n-cores',
|
||||
default=min(4, multiprocessing.cpu_count()),
|
||||
help='Number of CPU threads to be used (Default: min(4, number of CPUs))', # noqa
|
||||
type=int)
|
||||
parser.add_argument('--zip',
|
||||
help='Create one zip file per filetype')
|
||||
parser.add_argument('-v', '--version',
|
||||
help='Check encoding of the input file, UTF-8 is used instead'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--id-prefix',
|
||||
default='',
|
||||
help='A prefix for all the ids within the stand off annotations'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--log-dir',
|
||||
help='Logging directory (Default: --output-dir)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--mem-mb',
|
||||
help='Amount of system memory to be used '
|
||||
'(Default: min(--n-cores * 1024, available system memory))',
|
||||
type=int
|
||||
)
|
||||
parser.add_argument(
|
||||
'--n-cores',
|
||||
default=1,
|
||||
help='Number of CPU threads to be used',
|
||||
type=int
|
||||
)
|
||||
parser.add_argument(
|
||||
'-v', '--version',
|
||||
action='version',
|
||||
help='Returns the current version of the NLP pipeline',
|
||||
version='%(prog)s {}'.format(__version__))
|
||||
version='%(prog)s {}'.format(__version__)
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Set some tricky default values and check for insufficient input
|
||||
@ -177,20 +262,27 @@ def parse_args():
|
||||
raise Exception('--n-cores must be greater or equal 1')
|
||||
if args.mem_mb is None:
|
||||
max_mem_mb = int(os.popen('free -t -m').readlines()[-1].split()[1:][0])
|
||||
args.mem_mb = min(args.n_cores * 2048, max_mem_mb)
|
||||
if args.mem_mb < 2048:
|
||||
raise Exception('--mem-mb must be greater or equal 2048')
|
||||
if args.zip is not None and args.zip.lower().endswith('.zip'):
|
||||
# Remove .zip file extension if provided
|
||||
args.zip = args.zip[:-4]
|
||||
args.zip = args.zip if args.zip else 'output'
|
||||
args.mem_mb = min(args.n_cores * 1024, max_mem_mb)
|
||||
if args.mem_mb < 1024:
|
||||
raise Exception('--mem-mb must be greater or equal 1024')
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
nlp_pipeline = NLPPipeline(args.input_dir, args.output_dir, args.check_encoding, args.language, args.zip) # noqa
|
||||
retval = nlp_pipeline.run(dataDirRoot=args.log_dir, memMb=args.mem_mb, nCores=args.n_cores) # noqa
|
||||
main_workflow = MainWorkflow(
|
||||
args.input_dir,
|
||||
args.model,
|
||||
args.output_dir,
|
||||
check_encoding=args.check_encoding,
|
||||
id_prefix=args.id_prefix
|
||||
)
|
||||
main_workflow.collect_jobs()
|
||||
retval = main_workflow.run(
|
||||
dataDirRoot=args.log_dir,
|
||||
memMb=args.mem_mb,
|
||||
nCores=args.n_cores
|
||||
)
|
||||
sys.exit(retval)
|
||||
|
||||
|
||||
|
14
packages/stand-off-data-py/setup.py
Normal file
14
packages/stand-off-data-py/setup.py
Normal file
@ -0,0 +1,14 @@
|
||||
import setuptools
|
||||
|
||||
setuptools.setup(
|
||||
name='Stand off data',
|
||||
author='Patrick Jentsch',
|
||||
author_email='p.jentsch@uni-bielefeld.de',
|
||||
description='A python library to handle stand off data.',
|
||||
py_modules=['stand_off_data'],
|
||||
classifiers=[
|
||||
'Programming Language :: Python :: 3',
|
||||
'Operating System :: OS Independent',
|
||||
],
|
||||
python_requires='>=3.5'
|
||||
)
|
282
packages/stand-off-data-py/stand_off_data.py
Normal file
282
packages/stand-off-data-py/stand_off_data.py
Normal file
@ -0,0 +1,282 @@
|
||||
from xml.sax.saxutils import escape
|
||||
|
||||
|
||||
class StandOffData:
|
||||
def __init__(self, attrs={}):
|
||||
self.meta = attrs.get('meta', {})
|
||||
self.lookup = {}
|
||||
for x in attrs.get('tags', []):
|
||||
self.add_tag_definition(x)
|
||||
self.annotations = [
|
||||
TagAnnotation(x, self.lookup)
|
||||
for x in attrs.get('annotations', [])
|
||||
]
|
||||
|
||||
def add_tag_definition(self, attrs):
|
||||
tag_definition = TagDefinition(attrs)
|
||||
if tag_definition.id in self.lookup:
|
||||
raise Exception(f'Tag id already in use: {self.to_dict()}')
|
||||
self.lookup[tag_definition.id] = tag_definition
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'meta': self.meta,
|
||||
'lookup': {k: v.to_dict() for k, v in self.lookup.items()},
|
||||
'annotations': [x.to_dict() for x in self.annotations]
|
||||
}
|
||||
|
||||
def to_vrt(self, text):
|
||||
# Devide annotations into CWB's verticalized text format (.vrt) logic
|
||||
p_attrs = [] # positional attributes
|
||||
s_attrs = [] # structural attributes
|
||||
for annotation in self.annotations:
|
||||
if annotation.name == 'token':
|
||||
p_attrs.append(annotation)
|
||||
else:
|
||||
s_attrs.append(annotation)
|
||||
# Sort annotations, necessary for the next checks
|
||||
p_attrs.sort()
|
||||
s_attrs.sort()
|
||||
# Check for p_attr<->p_attr overlap
|
||||
for i, p_attr in enumerate(p_attrs[:-1]):
|
||||
next_p_attr = p_attrs[i + 1]
|
||||
# Check if first_p_attr starts/ends within second_p_attr
|
||||
if ((p_attr.start >= next_p_attr.start) and (p_attr.start < next_p_attr.end) # noqa
|
||||
or (p_attr.end > next_p_attr.start) and (p_attr.end <= next_p_attr.end)): # noqa
|
||||
raise Exception(
|
||||
'Positional attribute overlaps another: '
|
||||
f'{p_attr.to_dict()}<->{next_p_attr.to_dict()}'
|
||||
)
|
||||
# Check for s_attr<->p_attr overlap
|
||||
for i, s_attr in enumerate(s_attrs):
|
||||
for p_attr in p_attrs:
|
||||
# Check if s_attr starts within p_attr
|
||||
if s_attr.start > p_attr.start and s_attr.start < p_attr.end:
|
||||
# Change s_attr start to p_attr's start
|
||||
s_attrs[i].start = p_attr.start
|
||||
# Check if s_attr ends within p_attr
|
||||
if s_attr.end < p_attr.end and s_attr.end > p_attr.start:
|
||||
# Change s_attr end to p_attr's end
|
||||
s_attrs[i].end = p_attr.end
|
||||
# Check if s_attr starts/ends before/after p_attr
|
||||
if p_attr.start >= s_attr.end or p_attr.end <= s_attr.start:
|
||||
# No further Checking needed (because p_attrs are sorted)
|
||||
break
|
||||
p_attr_buffer = {}
|
||||
for i, p_attr in enumerate(p_attrs):
|
||||
p_attr_buffer[p_attr.start] = i
|
||||
s_attr_start_buffer = {}
|
||||
s_attr_end_buffer = {}
|
||||
for i, s_attr in enumerate(s_attrs):
|
||||
if s_attr.start in s_attr_start_buffer:
|
||||
s_attr_start_buffer[s_attr.start].append(i)
|
||||
else:
|
||||
s_attr_start_buffer[s_attr.start] = [i]
|
||||
if s_attr.end in s_attr_end_buffer:
|
||||
s_attr_end_buffer[s_attr.end].insert(0, i)
|
||||
else:
|
||||
s_attr_end_buffer[s_attr.end] = [i]
|
||||
vrt = ''
|
||||
vrt += '<text>\n'
|
||||
current_position = 0
|
||||
text_len = len(text)
|
||||
# As long as we have something in our buffers we process it
|
||||
while current_position <= text_len:
|
||||
# s_attr endings
|
||||
# for k in {k: v for k, v in s_attr_end_buffer.items() if k <= current_position}: # noqa
|
||||
if current_position in s_attr_end_buffer:
|
||||
# s_attr_indexes = s_attr_end_buffer.pop(k)
|
||||
s_attr_indexes = s_attr_end_buffer.pop(current_position)
|
||||
for s_attr_index in s_attr_indexes:
|
||||
s_attr = s_attrs[s_attr_index]
|
||||
vrt += f'</{escape(s_attr.name)}>\n'
|
||||
# s_attrs starts
|
||||
# for k in {k: v for k, v in s_attr_start_buffer.items() if k <= current_position}: # noqa
|
||||
if current_position in s_attr_start_buffer:
|
||||
# s_attr_indexes = s_attr_start_buffer.pop(k)
|
||||
s_attr_indexes = s_attr_start_buffer.pop(current_position)
|
||||
for s_attr_index in s_attr_indexes:
|
||||
s_attr = s_attrs[s_attr_index]
|
||||
vrt += f'<{escape(s_attr.name)}'
|
||||
for property in s_attr.properties:
|
||||
vrt += f' {escape(property.name)}="{escape(str(property.value))}"' # noqa
|
||||
vrt += '>\n'
|
||||
# p_attrs
|
||||
if current_position not in p_attr_buffer:
|
||||
current_position += 1
|
||||
continue
|
||||
p_attr_index = p_attr_buffer.pop(current_position)
|
||||
p_attr = p_attrs[p_attr_index]
|
||||
if text[p_attr.start:p_attr.end].isspace():
|
||||
current_position = p_attr.end
|
||||
continue
|
||||
_p_attr = {
|
||||
'lemma': 'None',
|
||||
'pos': 'None',
|
||||
'simple_pos': 'None',
|
||||
'word': 'None'
|
||||
}
|
||||
for property in p_attr.properties:
|
||||
if property.name not in _p_attr:
|
||||
continue
|
||||
_p_attr[property.name] = escape(str(property.value))
|
||||
_p_attr['word'] = escape(text[p_attr.start:p_attr.end])
|
||||
vrt += '{word}\t{pos}\t{lemma}\t{simple_pos}\n'.format(**_p_attr)
|
||||
current_position = p_attr.end
|
||||
vrt += '</text>\n'
|
||||
return vrt
|
||||
|
||||
|
||||
class TagAnnotation:
|
||||
def __init__(self, attrs, lookup):
|
||||
self.lookup = lookup
|
||||
self.tag_id = attrs['tag_id']
|
||||
self.start = attrs['start']
|
||||
self.end = attrs['end']
|
||||
self.properties = [
|
||||
PropertyAnnotation(x, self.lookup[self.tag_id].properties)
|
||||
for x in attrs.get('properties', [])
|
||||
]
|
||||
''' Sanity checks '''
|
||||
if self.tag_id not in self.lookup:
|
||||
raise Exception(f'Unknown tag: {self.to_dict()}')
|
||||
if self.end < self.start:
|
||||
raise Exception(f'Annotation end less then start: {self.to_dict()}') # noqa
|
||||
# property_ids = [x.property_id for x in self.properties]
|
||||
# for required_property_id, required_property in self.lookup[self.tag_id].required_properties.items(): # noqa
|
||||
# if required_property_id not in property_ids:
|
||||
# raise Exception(
|
||||
# f'Missing required property: {required_property.to_dict()}'
|
||||
# )
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.lookup[self.tag_id].name
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'tag_id': self.tag_id,
|
||||
'start': self.start,
|
||||
'end': self.end,
|
||||
'properties': [x.to_dict() for x in self.properties]
|
||||
}
|
||||
|
||||
def __lt__(self, other):
|
||||
if self.start == other.start:
|
||||
if self.name == 'token' and other.name != 'token':
|
||||
return False
|
||||
elif self.name != 'token' and other.name == 'token':
|
||||
return True
|
||||
else:
|
||||
return self.end > other.end
|
||||
else:
|
||||
return self.start < other.start
|
||||
|
||||
def __le__(self, other):
|
||||
if self.start == other.start:
|
||||
if self.name == 'token' and other.name != 'token':
|
||||
return False
|
||||
elif self.name != 'token' and other.name == 'token':
|
||||
return True
|
||||
else:
|
||||
return self.end >= other.end
|
||||
else:
|
||||
return self.start <= other.start
|
||||
|
||||
def __eq__(self, other):
|
||||
if self.start == other.start:
|
||||
if self.name == 'token' and other.name != 'token':
|
||||
return False
|
||||
elif self.name != 'token' and other.name == 'token':
|
||||
return False
|
||||
else:
|
||||
return self.end == other.end
|
||||
else:
|
||||
return False
|
||||
|
||||
def __ne__(self, other):
|
||||
return not self == other
|
||||
|
||||
def __gt__(self, other):
|
||||
return not self <= other
|
||||
|
||||
def __ge__(self, other):
|
||||
return not self < other
|
||||
|
||||
|
||||
class PropertyAnnotation:
|
||||
def __init__(self, attrs, lookup):
|
||||
self.lookup = lookup
|
||||
self.property_id = attrs['property_id']
|
||||
self.value = attrs['value']
|
||||
# TODO: Process attrs['possibleValues'] as self.labels (no id?)
|
||||
''' Sanity checks '''
|
||||
if self.property_id not in self.lookup:
|
||||
raise Exception(f'Unknown property: {self.to_dict()}')
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.lookup[self.property_id].name
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'property_id': self.property_id,
|
||||
'tag_id': self.tag_id,
|
||||
'value': self.value
|
||||
}
|
||||
|
||||
|
||||
class TagDefinition:
|
||||
def __init__(self, attrs):
|
||||
self.id = attrs['id']
|
||||
self.name = attrs['name']
|
||||
self.description = attrs.get('description', '')
|
||||
self.properties = {}
|
||||
for x in attrs.get('properties', []):
|
||||
self.add_property_definition(x)
|
||||
|
||||
def add_property_definition(self, attrs):
|
||||
property_definition = PropertyDefinition(attrs)
|
||||
if property_definition.id in self.properties:
|
||||
raise Exception(
|
||||
f'Property id already in use: {property_definition.to_dict()}')
|
||||
self.properties[property_definition.id] = property_definition
|
||||
|
||||
# @property
|
||||
# def required_properties(self):
|
||||
# return {property.id: property for property in self.properties.values()
|
||||
# if property.is_required}
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'id': self.id,
|
||||
'name': self.name,
|
||||
'description': self.description,
|
||||
'properties': {k: v.to_dict() for k, v in self.properties.items()}
|
||||
}
|
||||
|
||||
|
||||
class PropertyDefinition:
|
||||
def __init__(self, attrs):
|
||||
self.id = attrs['id']
|
||||
self.name = attrs['name']
|
||||
self.description = attrs.get('description', '')
|
||||
self.flags = attrs.get('flags', [])
|
||||
self.labels = attrs.get('labels', [])
|
||||
|
||||
# @property
|
||||
# def is_required(self):
|
||||
# return 'required' in self.flags
|
||||
|
||||
@property
|
||||
def has_multiple_values(self):
|
||||
return 'multiple' in self.flags
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
'id': self.id,
|
||||
'name': self.name,
|
||||
'description': self.description,
|
||||
'flags': self.flags,
|
||||
'labels': self.labels
|
||||
}
|
2
packages/stand-off-data-py/stand_off_data/__init__.py
Normal file
2
packages/stand-off-data-py/stand_off_data/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
# flake8: noqa
|
||||
from .models import StandOffData
|
376
spacy-nlp
376
spacy-nlp
@ -8,41 +8,67 @@ import json
|
||||
import os
|
||||
import spacy
|
||||
import textwrap
|
||||
import uuid
|
||||
|
||||
|
||||
spacy_models = {spacy.info(pipeline)['lang']: pipeline
|
||||
for pipeline in spacy.info()['pipelines']}
|
||||
spacy_models = {
|
||||
spacy.info(pipeline)['lang']: pipeline
|
||||
for pipeline in spacy.info()['pipelines']
|
||||
}
|
||||
|
||||
|
||||
# Parse the given arguments
|
||||
parser = ArgumentParser(description='Create annotations for a given txt file')
|
||||
parser.add_argument('input', help='Path to txt input file')
|
||||
parser.add_argument('output', help='Path to JSON output file')
|
||||
parser.add_argument('-l', '--language',
|
||||
parser = ArgumentParser(
|
||||
description='Create annotations for a given plain txt file'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-i', '--input-file',
|
||||
help='Input file'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-o', '--output-file',
|
||||
help='Output file',
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
'-m', '--model',
|
||||
choices=spacy_models.keys(),
|
||||
help='Language of the input (2-character ISO 639-1 language codes)', # noqa
|
||||
required=True)
|
||||
parser.add_argument('-c', '--check-encoding',
|
||||
help='The model to be used',
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
'-c', '--check-encoding',
|
||||
action='store_true',
|
||||
help='Check encoding of the input file, UTF-8 is used instead') # noqa
|
||||
help='Check encoding of the input file, UTF-8 is used instead'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--id-prefix',
|
||||
default='',
|
||||
help='A prefix for all the ids within the stand off annotations'
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.input, "rb") as text_file:
|
||||
|
||||
def generate_id(name):
|
||||
return f'{args.id_prefix}{uuid.uuid3(uuid.NAMESPACE_DNS, name)}'
|
||||
|
||||
|
||||
with open(args.input_file, "rb") as input_file:
|
||||
if args.check_encoding:
|
||||
encoding = chardet.detect(text_file.read())['encoding']
|
||||
encoding = chardet.detect(input_file.read())['encoding']
|
||||
else:
|
||||
encoding = 'utf-8'
|
||||
text_file.seek(0)
|
||||
input_file.seek(0)
|
||||
text_md5 = hashlib.md5()
|
||||
for chunk in iter(lambda: text_file.read(128 * text_md5.block_size), b''):
|
||||
for chunk in iter(lambda: input_file.read(128 * text_md5.block_size), b''):
|
||||
text_md5.update(chunk)
|
||||
|
||||
# Load the text contents from the input file
|
||||
with open(args.input, encoding=encoding) as text_file:
|
||||
with open(args.input_file, encoding=encoding) as input_file:
|
||||
# spaCy NLP is limited to strings with a maximum of 1 million characters at
|
||||
# once. So we split it into suitable chunks.
|
||||
text_chunks = textwrap.wrap(
|
||||
text_file.read(),
|
||||
input_file.read(),
|
||||
1000000,
|
||||
break_long_words=False,
|
||||
break_on_hyphens=False,
|
||||
@ -51,84 +77,197 @@ with open(args.input, encoding=encoding) as text_file:
|
||||
replace_whitespace=False
|
||||
)
|
||||
|
||||
model = spacy_models[args.language]
|
||||
nlp = spacy.load(model)
|
||||
model_name = spacy_models[args.model]
|
||||
nlp = spacy.load(model_name)
|
||||
|
||||
meta = {
|
||||
'generator': {
|
||||
'name': 'nopaque NLP service',
|
||||
'version': '1.0.0',
|
||||
'name': 'nopaque spacy NLP',
|
||||
'version': '0.1.0',
|
||||
'arguments': {
|
||||
'check_encoding': args.check_encoding,
|
||||
'language': args.language
|
||||
'model': args.model
|
||||
}
|
||||
},
|
||||
'file': {
|
||||
'encoding': encoding,
|
||||
'md5': text_md5.hexdigest(),
|
||||
'name': os.path.basename(args.input)
|
||||
'name': os.path.basename(args.input_file)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
tags = {
|
||||
'token': {
|
||||
'description': '',
|
||||
'properties': {
|
||||
'lemma': {
|
||||
'description': 'The base form of the word',
|
||||
'flags': ['required'],
|
||||
'tagset': None
|
||||
},
|
||||
'pos': {
|
||||
'description': 'The detailed part-of-speech tag',
|
||||
'flags': ['required'],
|
||||
'tagset': {label: spacy.explain(label) for label in spacy.info(model)['labels']['tagger']} # noqa
|
||||
},
|
||||
'simple_pos': {
|
||||
tags = []
|
||||
token = {
|
||||
'id': generate_id('token'),
|
||||
'name': 'token',
|
||||
'description': 'An individual token — i.e. a word, punctuation symbol, whitespace, etc.', # noqa
|
||||
'properties': []
|
||||
}
|
||||
# TODO: Check if all languages support token.sentiment
|
||||
token['properties'].append(
|
||||
{
|
||||
'id': generate_id('token.sentiment'),
|
||||
'name': 'sentiment',
|
||||
'description': 'A scalar value indicating the positivity or negativity of the token.' # noqa
|
||||
}
|
||||
)
|
||||
if nlp.has_pipe('lemmatizer'):
|
||||
token['properties'].append(
|
||||
{
|
||||
'id': generate_id('token.lemma'),
|
||||
'name': 'lemma',
|
||||
'description': 'The base form of the word'
|
||||
}
|
||||
)
|
||||
if nlp.has_pipe('morphologizer') or nlp.has_pipe('tagger'):
|
||||
token['properties'].append(
|
||||
{
|
||||
'id': generate_id('token.simple_pos'),
|
||||
'name': 'simple_pos',
|
||||
'description': 'The simple UPOS part-of-speech tag',
|
||||
'flags': ['required'],
|
||||
'tagset': {
|
||||
'ADJ': 'adjective',
|
||||
'ADP': 'adposition',
|
||||
'ADV': 'adverb',
|
||||
'AUX': 'auxiliary verb',
|
||||
'CONJ': 'coordinating conjunction',
|
||||
'DET': 'determiner',
|
||||
'INTJ': 'interjection',
|
||||
'NOUN': 'noun',
|
||||
'NUM': 'numeral',
|
||||
'PART': 'particle',
|
||||
'PRON': 'pronoun',
|
||||
'PROPN': 'proper noun',
|
||||
'PUNCT': 'punctuation',
|
||||
'SCONJ': 'subordinating conjunction',
|
||||
'SYM': 'symbol',
|
||||
'VERB': 'verb',
|
||||
'X': 'other'
|
||||
}
|
||||
'labels': [
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'ADJ',
|
||||
'description': 'adjective'
|
||||
},
|
||||
'ner': {
|
||||
'description': 'Label indicating the type of the entity',
|
||||
'tagset': {label: spacy.explain(label) for label in spacy.info(model)['labels']['ner']} # noqa
|
||||
}
|
||||
}
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'ADP',
|
||||
'description': 'adposition'
|
||||
},
|
||||
's': {
|
||||
'description': 'Encodes the start and end of a sentence',
|
||||
'properties': None
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'ADV',
|
||||
'description': 'adverb'
|
||||
},
|
||||
'ent': {
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'AUX',
|
||||
'description': 'auxiliary verb'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'CONJ',
|
||||
'description': 'coordinating conjunction'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'DET',
|
||||
'description': 'determiner'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'INTJ',
|
||||
'description': 'interjection'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'NOUN',
|
||||
'description': 'noun'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'NUM',
|
||||
'description': 'numeral'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'PART',
|
||||
'description': 'particle'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'PRON',
|
||||
'description': 'pronoun'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'PROPN',
|
||||
'description': 'proper noun'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'PUNCT',
|
||||
'description': 'punctuation'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'SCONJ',
|
||||
'description': 'subordinating conjunction'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'SYM',
|
||||
'description': 'symbol'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'VERB',
|
||||
'description': 'verb'
|
||||
},
|
||||
{
|
||||
'id': generate_id('token.simple_pos=ADJ'),
|
||||
'name': 'X',
|
||||
'description': 'other'
|
||||
}
|
||||
]
|
||||
}
|
||||
)
|
||||
if nlp.has_pipe('tagger'):
|
||||
token['properties'].append(
|
||||
{
|
||||
'id': generate_id('token.pos'),
|
||||
'name': 'pos',
|
||||
'description': 'The detailed part-of-speech tag',
|
||||
'labels': [
|
||||
{
|
||||
'id': generate_id(f'token.pos={label}'),
|
||||
'name': label,
|
||||
'description': spacy.explain(label) or ''
|
||||
} for label in spacy.info(model_name)['labels']['tagger']
|
||||
]
|
||||
}
|
||||
)
|
||||
if nlp.has_pipe('ner') or nlp.has_pipe('entity_ruler'):
|
||||
tags.append(
|
||||
{
|
||||
'id': generate_id('ent'),
|
||||
'name': 'ent',
|
||||
'description': 'Encodes the start and end of a named entity',
|
||||
'properties': {
|
||||
'type': {
|
||||
'properties': [
|
||||
{
|
||||
'id': generate_id('ent.type'),
|
||||
'name': 'type',
|
||||
'description': 'Label indicating the type of the entity',
|
||||
'flags': ['required'],
|
||||
'tagset': {label: spacy.explain(label) for label in spacy.info(model)['labels']['ner']} # noqa
|
||||
'labels': [
|
||||
{
|
||||
'id': generate_id('ent.type={}'.format(label)),
|
||||
'name': label,
|
||||
'description': spacy.explain(label) or ''
|
||||
} for label in spacy.info(model_name)['labels']['ner']
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
)
|
||||
if nlp.has_pipe('parser') or nlp.has_pipe('senter') or nlp.has_pipe('sentencizer'): # noqa
|
||||
# TODO: Check if all languages support sent.sentiment
|
||||
tags.append(
|
||||
{
|
||||
'id': generate_id('s'),
|
||||
'name': 's',
|
||||
'description': 'Encodes the start and end of a sentence',
|
||||
'properties': [
|
||||
{
|
||||
'id': generate_id('s.sentiment'),
|
||||
'name': 'sentiment',
|
||||
'description': 'A scalar value indicating the positivity or negativity of the sentence.' # noqa
|
||||
}
|
||||
]
|
||||
}
|
||||
)
|
||||
tags.append(token)
|
||||
|
||||
annotations = []
|
||||
|
||||
@ -136,37 +275,78 @@ chunk_offset = 0
|
||||
while text_chunks:
|
||||
text_chunk = text_chunks.pop(0)
|
||||
doc = nlp(text_chunk)
|
||||
for token in doc:
|
||||
if token.is_space:
|
||||
continue
|
||||
if token.is_sent_start:
|
||||
annotation = {'start': token.sent.start_char + chunk_offset,
|
||||
'end': token.sent.end_char + chunk_offset,
|
||||
'tag': 's'}
|
||||
annotations.append(annotation)
|
||||
# Check if the token is the start of an entity
|
||||
if token.ent_iob == 3:
|
||||
for ent_candidate in token.sent.ents:
|
||||
if ent_candidate.start_char == token.idx:
|
||||
ent = ent_candidate
|
||||
annotation = {'start': ent.start_char + chunk_offset,
|
||||
if hasattr(doc, 'ents'):
|
||||
for ent in doc.ents:
|
||||
annotation = {
|
||||
'start': ent.start_char + chunk_offset,
|
||||
'end': ent.end_char + chunk_offset,
|
||||
'tag': 'ent',
|
||||
'properties': {'type': token.ent_type_}}
|
||||
'tag_id': generate_id('ent'),
|
||||
'properties': [
|
||||
{
|
||||
'property_id': generate_id('ent.type'),
|
||||
'value': ent.label_
|
||||
}
|
||||
]
|
||||
}
|
||||
annotations.append(annotation)
|
||||
break
|
||||
annotation = {'start': token.idx + chunk_offset,
|
||||
if hasattr(doc, 'sents'):
|
||||
for sent in doc.sents:
|
||||
annotation = {
|
||||
'start': sent.start_char + chunk_offset,
|
||||
'end': sent.end_char + chunk_offset,
|
||||
'tag_id': generate_id('s'),
|
||||
'properties': []
|
||||
}
|
||||
if hasattr(sent, 'sentiment'):
|
||||
annotation['properties'].append(
|
||||
{
|
||||
'property_id': generate_id('s.sentiment'),
|
||||
'value': sent.sentiment
|
||||
}
|
||||
)
|
||||
annotations.append(annotation)
|
||||
for token in doc:
|
||||
annotation = {
|
||||
'start': token.idx + chunk_offset,
|
||||
'end': token.idx + len(token.text) + chunk_offset,
|
||||
'tag': 'token',
|
||||
'properties': {'pos': token.tag_,
|
||||
'lemma': token.lemma_,
|
||||
'simple_pos': token.pos_}}
|
||||
if token.ent_type_:
|
||||
annotation['properties']['ner'] = token.ent_type_
|
||||
'tag_id': generate_id('token'),
|
||||
'properties': []
|
||||
}
|
||||
if hasattr(token, 'lemma_'):
|
||||
annotation['properties'].append(
|
||||
{
|
||||
'property_id': generate_id('token.lemma'),
|
||||
'value': token.lemma_
|
||||
}
|
||||
)
|
||||
if hasattr(token, 'pos_'):
|
||||
annotation['properties'].append(
|
||||
{
|
||||
'property_id': generate_id('token.simple_pos'),
|
||||
'value': token.pos_
|
||||
}
|
||||
)
|
||||
if hasattr(token, 'sentiment'):
|
||||
annotation['properties'].append(
|
||||
{
|
||||
'property_id': generate_id('token.sentiment'),
|
||||
'value': token.sentiment
|
||||
}
|
||||
)
|
||||
if hasattr(token, 'tag_'):
|
||||
annotation['properties'].append(
|
||||
{
|
||||
'property_id': generate_id('token.pos'),
|
||||
'value': token.tag_
|
||||
}
|
||||
)
|
||||
annotations.append(annotation)
|
||||
chunk_offset += len(text_chunk)
|
||||
text_chunk = None
|
||||
|
||||
with open(args.output, 'w') as output_file:
|
||||
json.dump({'meta': meta, 'tags': tags, 'annotations': annotations},
|
||||
output_file, indent=4)
|
||||
with open(args.output_file, 'w') as output_file:
|
||||
json.dump(
|
||||
{'meta': meta, 'tags': tags, 'annotations': annotations},
|
||||
output_file,
|
||||
indent=4
|
||||
)
|
||||
|
133
vrt-creator
133
vrt-creator
@ -2,129 +2,40 @@
|
||||
# coding=utf-8
|
||||
|
||||
from argparse import ArgumentParser
|
||||
from xml.sax.saxutils import escape
|
||||
from stand_off_data import StandOffData
|
||||
import hashlib
|
||||
import json
|
||||
|
||||
|
||||
# Two global ressources - Not very elegant but it works for now
|
||||
stand_off_data = None
|
||||
text = None
|
||||
|
||||
|
||||
def meta_to_string():
|
||||
string = ''
|
||||
string += '<generator software="{} ({})" arguments="check_encoding: {}; language: {}"/>\n'.format( # noqa
|
||||
stand_off_data['meta']['generator']['name'],
|
||||
stand_off_data['meta']['generator']['version'],
|
||||
stand_off_data['meta']['generator']['arguments']['check_encoding'],
|
||||
stand_off_data['meta']['generator']['arguments']['language']
|
||||
parser = ArgumentParser(
|
||||
description='Convert plain text and JSON stand off to a CWB vrt file'
|
||||
)
|
||||
string += '<file encoding="{}" name="{}" md5="{}"/>\n'.format(
|
||||
stand_off_data['meta']['file']['encoding'],
|
||||
stand_off_data['meta']['file']['name'],
|
||||
stand_off_data['meta']['file']['md5']
|
||||
parser.add_argument(
|
||||
'-s', '--stand-off-data-file',
|
||||
help='JSON stand off data input file'
|
||||
)
|
||||
return string
|
||||
|
||||
|
||||
def tags_to_string():
|
||||
return ''
|
||||
|
||||
|
||||
def annotations_to_string(end=float('inf')):
|
||||
string = ''
|
||||
while stand_off_data['annotations']:
|
||||
if stand_off_data['annotations'][0]['start'] >= end:
|
||||
break
|
||||
annotation = stand_off_data['annotations'].pop(0)
|
||||
#######################################################################
|
||||
# Check for malformed annotations #
|
||||
#######################################################################
|
||||
if 'tag' not in annotation:
|
||||
raise Exception('Annotation tag is missing')
|
||||
|
||||
if annotation['tag'] not in stand_off_data['tags']:
|
||||
raise Exception('Unknown annotation tag: ' + annotation['tag'])
|
||||
|
||||
tag_model = stand_off_data['tags'][annotation['tag']]
|
||||
if 'properties' in tag_model:
|
||||
properties_model = tag_model['properties']
|
||||
if properties_model is not None:
|
||||
required_properties = filter(lambda x: 'flags' in x and 'required' in x['flags'], properties_model) # noqa
|
||||
if required_properties and annotation['properties'] is None:
|
||||
raise Exception('There are required properties but the "Properties" attribute is missing') # noqa
|
||||
for property in required_properties:
|
||||
if property not in annotation['properties']:
|
||||
raise Exception('Required property is missing: ' + property) # noqa
|
||||
#######################################################################
|
||||
# Process tokens ~ cwb's positional attributes #
|
||||
#######################################################################
|
||||
if annotation['tag'] == 'token':
|
||||
string += '{}\t{}\t{}\t{}\t{}\n'.format(
|
||||
escape(text[annotation['start']:annotation['end']]),
|
||||
escape(annotation['properties']['pos']),
|
||||
escape(annotation['properties']['lemma']),
|
||||
escape(annotation['properties']['simple_pos']),
|
||||
escape(annotation['properties']['ner'] if 'ner' in annotation['properties'] else 'None') # noqa
|
||||
parser.add_argument(
|
||||
'-t', '--text-file',
|
||||
help='Plain text input file'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-o', '--output-file',
|
||||
help='Output file',
|
||||
required=True
|
||||
)
|
||||
#######################################################################
|
||||
# Process other tags ~ cwb's structural attributes #
|
||||
#######################################################################
|
||||
else:
|
||||
properties = ''
|
||||
if 'properties' in annotation and annotation['properties'] is not None: # noqa
|
||||
for property, value in annotation['properties'].items():
|
||||
if not value:
|
||||
continue
|
||||
if properties_model and property in properties_model:
|
||||
if 'flags' in properties_model and 'multiple' in properties_model['flags']: # noqa
|
||||
properties += ' {}="|{}|"'.format(property, '|'.join(value)) # noqa
|
||||
else:
|
||||
properties += ' {}="{}"'.format(property, value)
|
||||
string += '<' + annotation['tag'] + properties + '>\n'
|
||||
string += annotations_to_string(end=min(annotation['end'], end))
|
||||
string += '</' + annotation['tag'] + '>\n'
|
||||
return string
|
||||
|
||||
|
||||
def main():
|
||||
global stand_off_data
|
||||
global text
|
||||
|
||||
# Parse the given arguments
|
||||
parser = ArgumentParser(description='Create a vrt from JSON and txt')
|
||||
parser.add_argument('text', help='Path to txt file')
|
||||
parser.add_argument('stand_off_data', help='Path to JSON file')
|
||||
parser.add_argument('output', help='Path to vrt output file')
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.stand_off_data) as stand_of_data_file:
|
||||
stand_off_data = json.load(stand_of_data_file)
|
||||
with open(args.stand_off_data_file) as stand_of_data_file:
|
||||
stand_off_data = StandOffData(json.load(stand_of_data_file))
|
||||
|
||||
with open(args.text, "rb") as text_file:
|
||||
with open(args.text_file, "rb") as text_file:
|
||||
text_md5 = hashlib.md5()
|
||||
for chunk in iter(lambda: text_file.read(128 * text_md5.block_size), b''): # noqa
|
||||
for chunk in iter(lambda: text_file.read(128 * text_md5.block_size), b''):
|
||||
text_md5.update(chunk)
|
||||
if text_md5.hexdigest() != stand_off_data['meta']['file']['md5']:
|
||||
if text_md5.hexdigest() != stand_off_data.meta['file']['md5']:
|
||||
raise Exception('md5 not equal')
|
||||
|
||||
with open(args.text, encoding=stand_off_data['meta']['file']['encoding']) as text_file: # noqa
|
||||
with open(args.text_file, encoding=stand_off_data.meta['file']['encoding']) as text_file: # noqa
|
||||
text = text_file.read()
|
||||
|
||||
vrt = ''
|
||||
vrt += '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>\n'
|
||||
vrt += '<corpus>\n'
|
||||
vrt += '<text>\n'
|
||||
vrt += meta_to_string()
|
||||
vrt += tags_to_string()
|
||||
vrt += annotations_to_string()
|
||||
vrt += '</text>\n'
|
||||
vrt += '</corpus>'
|
||||
|
||||
with open(args.output, 'w') as vrt_file:
|
||||
vrt_file.write(vrt)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
with open(args.output_file, 'w') as vrt_file:
|
||||
vrt_file.write(stand_off_data.to_vrt(text))
|
||||
|
10
wrapper/nlp
10
wrapper/nlp
@ -6,7 +6,7 @@ import os
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
CONTAINER_IMAGE = 'gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/nlp:1.0.0b'
|
||||
CONTAINER_IMAGE = 'gitlab.ub.uni-bielefeld.de:4567/sfb1288inf/nlp:v0.1.0'
|
||||
CONTAINER_INPUT_DIR = '/input'
|
||||
CONTAINER_OUTPUT_DIR = '/output'
|
||||
CONTAINER_LOG_DIR = '/logs'
|
||||
@ -19,17 +19,17 @@ parser.add_argument('-o', '--output-dir')
|
||||
parser.add_argument('--log-dir')
|
||||
args, remaining_args = parser.parse_known_args()
|
||||
|
||||
cmd = ['docker', 'run', '--rm', '-it', '-u', '{}:{}'.format(UID, GID)]
|
||||
cmd = ['docker', 'run', '--rm', '-it', '-u', f'{UID}:{GID}']
|
||||
if args.input_dir is not None:
|
||||
mapping = os.path.abspath(args.input_dir) + ':' + CONTAINER_INPUT_DIR
|
||||
mapping = f'{os.path.abspath(args.input_dir)}:{CONTAINER_INPUT_DIR}'
|
||||
cmd += ['-v', mapping]
|
||||
remaining_args += ['-i', CONTAINER_INPUT_DIR]
|
||||
if args.output_dir is not None:
|
||||
mapping = os.path.abspath(args.output_dir) + ':' + CONTAINER_OUTPUT_DIR
|
||||
mapping = f'{os.path.abspath(args.output_dir)}:{CONTAINER_OUTPUT_DIR}'
|
||||
cmd += ['-v', mapping]
|
||||
remaining_args += ['-o', CONTAINER_OUTPUT_DIR]
|
||||
if args.log_dir is not None:
|
||||
mapping = os.path.abspath(args.log_dir) + ':' + CONTAINER_LOG_DIR
|
||||
mapping = '{os.path.abspath(args.log_dir)}:{CONTAINER_LOG_DIR}'
|
||||
cmd += ['-v', mapping]
|
||||
remaining_args += ['--log-dir', CONTAINER_LOG_DIR]
|
||||
cmd.append(CONTAINER_IMAGE)
|
||||
|
Loading…
x
Reference in New Issue
Block a user