mirror of
https://gitlab.ub.uni-bielefeld.de/sfb1288inf/nlp.git
synced 2025-07-01 15:00:33 +00:00
Update file handling. Now md5 is correct
This commit is contained in:
23
spacy-nlp
23
spacy-nlp
@ -16,29 +16,32 @@ spacy_models = {spacy.info(pipeline)['lang']: pipeline
|
||||
|
||||
# Parse the given arguments
|
||||
parser = ArgumentParser(description='Create annotations for a given txt file')
|
||||
parser.add_argument('input', metavar='Path to txt input file')
|
||||
parser.add_argument('output', metavar='Path to JSON output file')
|
||||
parser.add_argument('input', help='Path to txt input file')
|
||||
parser.add_argument('output', help='Path to JSON output file')
|
||||
parser.add_argument('-l', '--language',
|
||||
choices=spacy_models.keys(),
|
||||
help='Language of the input (2-character ISO 639-1 language codes)', # noqa
|
||||
required=True)
|
||||
parser.add_argument('-c', '--check-encoding', action='store_true')
|
||||
parser.add_argument('-c', '--check-encoding',
|
||||
action='store_true',
|
||||
help='Check encoding of the input file, UTF-8 is used instead') # noqa
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.check_encoding:
|
||||
with open(args.input, "rb") as text_file:
|
||||
if args.check_encoding:
|
||||
encoding = chardet.detect(text_file.read())['encoding']
|
||||
else:
|
||||
encoding = 'utf-8'
|
||||
|
||||
# If requested: Check the encoding of the text contents from the input file
|
||||
# Else: Use utf-8
|
||||
with open(args.input, "rb") as text_file:
|
||||
if args.check_encoding:
|
||||
encoding = chardet.detect(text_file.read())['encoding']
|
||||
else:
|
||||
encoding = 'utf-8'
|
||||
text_md5 = hashlib.md5()
|
||||
for chunk in iter(lambda: text_file.read(128 * text_md5.block_size), b''):
|
||||
text_md5.update(chunk)
|
||||
|
||||
# Load the text contents from the input file
|
||||
with open(args.input, encoding=encoding) as text_file:
|
||||
# spaCy NLP is limited to strings with maximum 1 million characters at
|
||||
# spaCy NLP is limited to strings with a maximum of 1 million characters at
|
||||
# once. So we split it into suitable chunks.
|
||||
text_chunks = textwrap.wrap(
|
||||
text_file.read(),
|
||||
|
Reference in New Issue
Block a user