Update to newer Version

This commit is contained in:
Patrick Jentsch 2020-09-23 15:26:53 +02:00
parent 5bd0feda5c
commit 42583fea46
4 changed files with 151 additions and 105 deletions

View File

@ -9,36 +9,68 @@ variables:
stages:
- build
- push
- clean
before_script:
- docker login -u gitlab-ci-token -p $CI_JOB_TOKEN $CI_REGISTRY
.docker_setup:
before_script:
- docker login -u gitlab-ci-token -p $CI_JOB_TOKEN $CI_REGISTRY
Build:
.reg_setup:
before_script:
- apk add --no-cache curl
- curl --fail --show-error --location "https://github.com/genuinetools/reg/releases/download/v$REG_VERSION/reg-linux-amd64" --output /usr/local/bin/reg
- echo "$REG_SHA256 /usr/local/bin/reg" | sha256sum -c -
- chmod a+x /usr/local/bin/reg
variables:
REG_SHA256: ade837fc5224acd8c34732bf54a94f579b47851cc6a7fd5899a98386b782e228
REG_VERSION: 0.16.1
build_image:
extends: .docker_setup
script:
- docker build --pull -t $CI_REGISTRY_IMAGE:tmp .
- docker push $CI_REGISTRY_IMAGE:tmp
- docker build -t $INTERMEDIATE_IMAGE_TAG .
- docker push $INTERMEDIATE_IMAGE_TAG
stage: build
tags:
- docker
- docker
variables:
INTERMEDIATE_IMAGE_TAG: $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
Push latest:
push_master:
extends:
- .docker_setup
- .reg_setup
only:
- master
script:
- docker pull $CI_REGISTRY_IMAGE:tmp
- docker tag $CI_REGISTRY_IMAGE:tmp $CI_REGISTRY_IMAGE:latest
- docker push $CI_REGISTRY_IMAGE:latest
- docker pull $INTERMEDIATE_IMAGE_TAG
- /usr/local/bin/reg rm -d --auth-url $CI_REGISTRY -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $INTERMEDIATE_IMAGE_TAG
- docker tag $INTERMEDIATE_IMAGE_TAG $IMAGE_TAG
- docker push $IMAGE_TAG
stage: push
tags:
- docker
- docker
variables:
IMAGE_TAG: $CI_REGISTRY_IMAGE:latest
INTERMEDIATE_IMAGE_TAG: $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
Push tag:
push_other:
extends:
- .docker_setup
- .reg_setup
except:
- master
only:
- branches
- tags
script:
- docker pull $CI_REGISTRY_IMAGE:tmp
- docker tag $CI_REGISTRY_IMAGE:tmp $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_NAME
- docker push $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_NAME
- docker pull $INTERMEDIATE_IMAGE_TAG
- /usr/local/bin/reg rm -d --auth-url $CI_REGISTRY -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $INTERMEDIATE_IMAGE_TAG
- docker tag $INTERMEDIATE_IMAGE_TAG $IMAGE_TAG
- docker push $IMAGE_TAG
stage: push
tags:
- docker
- docker
variables:
IMAGE_TAG: $CI_REGISTRY_IMAGE:CI_COMMIT_REF_NAME
INTERMEDIATE_IMAGE_TAG: $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA

View File

@ -1,52 +1,54 @@
FROM debian:10-slim
LABEL maintainer="inf_sfb1288@lists.uni-bielefeld.de"
LABEL authors="Patrick Jentsch <p.jentsch@uni-bielefeld.de>, Stephan Porada <sporada@uni-bielefeld.de>"
ENV LANG=C.UTF-8
RUN apt-get update \
RUN apt-get update
## Install pyFlow ##
ENV PYFLOW_RELEASE=1.1.20
ADD "https://github.com/Illumina/pyflow/releases/download/v${PYFLOW_RELEASE}/pyflow-${PYFLOW_RELEASE}.tar.gz" .
RUN tar -xzf "pyflow-${PYFLOW_RELEASE}.tar.gz" \
&& cd "pyflow-${PYFLOW_RELEASE}" \
&& apt-get install -y --no-install-recommends \
python2.7 \
&& python2.7 setup.py build install \
&& cd .. \
&& rm -r "pyflow-${PYFLOW_RELEASE}" "pyflow-${PYFLOW_RELEASE}.tar.gz"
## Install Pipeline ##
ENV SPACY_VERSION=2.3.2
ENV SPACY_MODELS_VERSION=2.3.0
RUN apt-get install -y --no-install-recommends \
python3.7 \
python3-pip \
zip \
&& pip3 install \
chardet
ENV PYFLOW_VERSION=1.1.20
ADD "https://github.com/Illumina/pyflow/releases/download/v${PYFLOW_VERSION}/pyflow-${PYFLOW_VERSION}.tar.gz" .
RUN tar -xzf "pyflow-${PYFLOW_VERSION}.tar.gz" \
&& cd "pyflow-${PYFLOW_VERSION}" \
&& python2.7 setup.py build install \
&& cd .. \
&& rm -rf \
"pyflow-${PYFLOW_VERSION}" \
"pyflow-${PYFLOW_VERSION}.tar.gz"
ENV SPACY_VERSION=2.2.4
ENV SPACY_MODELS_VERSION=2.2.5
RUN pip3 install setuptools wheel && pip3 install "spacy==${SPACY_VERSION}" \
&& python3 -m spacy download "de_core_news_sm-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "el_core_news_sm-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "en_core_web_sm-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "es_core_news_sm-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "fr_core_news_sm-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "it_core_news_sm-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "nl_core_news_sm-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "pt_core_news_sm-${SPACY_MODELS_VERSION}" --direct
RUN rm -rf /var/lib/apt/lists/*
chardet \
setuptools \
wheel \
&& pip3 install "spacy==${SPACY_VERSION}" \
&& python3 -m spacy download "de_core_news_lg-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "el_core_news_lg-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "en_core_web_lg-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "es_core_news_lg-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "fr_core_news_lg-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "it_core_news_lg-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "nl_core_news_lg-${SPACY_MODELS_VERSION}" --direct \
&& python3 -m spacy download "pt_core_news_lg-${SPACY_MODELS_VERSION}" --direct
COPY nlp /usr/local/bin
COPY spacy-nlp /usr/local/bin
## Cleanup ##
RUN rm -r /var/lib/apt/lists/*
ENTRYPOINT ["nlp"]
CMD ["--help"]

80
nlp
View File

@ -5,10 +5,10 @@
nlp
Usage: For usage instructions run with option --help
Author: Patrick Jentsch <p.jentsch@uni-bielefeld.de>
Authors: Patrick Jentsch <p.jentsch@uni-bielefeld.de
Stephan Porada <sporada@uni-bielefeld.de>
"""
from argparse import ArgumentParser
from pyflow import WorkflowRunner
import multiprocessing
@ -34,19 +34,31 @@ def parse_args():
parser.add_argument('-o', '--output-directory',
help='Output directory',
required=True)
parser.add_argument('-l', '--language', choices=SPACY_MODELS.keys(),
parser.add_argument('-l', '--language',
choices=SPACY_MODELS.keys(),
required=True)
parser.add_argument('--check-encoding', action='store_true')
parser.add_argument('--log-dir')
parser.add_argument('--n-cores',
default=min(4, multiprocessing.cpu_count()),
help='total number of cores available', type=int)
parser.add_argument('--zip',
help='Zips everything into one archive.')
parser.add_argument('--zip', help='Zips everything into one archive.')
return parser.parse_args()
class NLPPipelineJob:
"""An NLP pipeline job class
Each input file of the pipeline is represented as an NLP pipeline job,
which holds all necessary information for the pipeline to process it.
Arguments:
file -- Path to the file
output_dir -- Path to a directory, where job results a stored
intermediate_dir -- Path to a directory, where intermediate files are
stored.
"""
def __init__(self, file, output_dir):
self.file = file
self.name = os.path.basename(file).rsplit('.', 1)[0]
@ -54,13 +66,23 @@ class NLPPipelineJob:
class NLPPipeline(WorkflowRunner):
def __init__(self, check_encoding, jobs, lang, n_cores, output_dir, zip):
self.check_encoding = check_encoding
self.jobs = jobs
def __init__(self, input_dir, lang, output_dir, check_encoding, n_cores, zip):
self.input_dir = input_dir
self.lang = lang
self.output_dir = output_dir
self.check_encoding = check_encoding
self.n_cores = n_cores
self.output_dir = output_dir
self.zip = zip
if zip is None:
self.zip = zip
else:
if zip.lower().endswith('.zip'):
# Remove .zip file extension if provided
self.zip = zip[:-4]
self.zip = self.zip if self.zip else 'output'
else:
self.zip = zip
self.jobs = collect_jobs(self.input_dir, self.output_dir)
def workflow(self):
if not self.jobs:
@ -71,25 +93,24 @@ class NLPPipeline(WorkflowRunner):
' # setup output directory #
' ##################################################
'''
setup_output_directory_jobs = []
setup_output_directory_tasks = []
for i, job in enumerate(self.jobs):
cmd = 'mkdir'
cmd += ' -p'
cmd += ' "{}"'.format(job.output_dir)
lbl = 'setup_output_directory_-_{}'.format(i)
setup_output_directory_jobs.append(self.addTask(command=cmd,
label=lbl))
task = self.addTask(command=cmd, label=lbl)
setup_output_directory_tasks.append(task)
'''
' ##################################################
' # nlp #
' ##################################################
'''
nlp_jobs = []
nlp_tasks = []
n_cores = min(self.n_cores, max(1, int(self.n_cores / len(self.jobs))))
for i, job in enumerate(self.jobs):
output_file = os.path.join(job.output_dir,
'{}.vrt'.format(job.name))
output_file = os.path.join(job.output_dir, '{}.vrt'.format(job.name)) # noqa
cmd = 'spacy-nlp'
cmd += ' -i "{}"'.format(job.file)
cmd += ' -l "{}"'.format(self.lang)
@ -98,36 +119,29 @@ class NLPPipeline(WorkflowRunner):
cmd += ' --check-encoding'
deps = 'setup_output_directory_-_{}'.format(i)
lbl = 'nlp_-_{}'.format(i)
nlp_jobs.append(self.addTask(command=cmd,
dependencies=deps,
label=lbl,
nCores=n_cores))
task = self.addTask(command=cmd, dependencies=deps, label=lbl, nCores=n_cores) # noqa
nlp_tasks.append(task)
'''
' ##################################################
' # zip creation #
' ##################################################
'''
zip_creation_jobs = []
zip_creation_tasks = []
if self.zip is not None:
# Remove .zip file extension if provided
if self.zip.endswith('.zip'):
self.zip = self.zip[:-4]
self.zip = self.zip if self.zip else 'output'
cmd = 'cd "{}"'.format(self.output_dir)
cmd += ' && '
cmd += 'zip'
cmd += ' -r'
cmd += ' "{}".zip .'.format(self.zip)
cmd += ' "{}.zip" .'.format(self.zip)
cmd += ' -x "pyflow.data*"'
cmd += ' -i "*.vrt"'
cmd += ' && '
cmd += 'cd -'
deps = nlp_jobs
deps = nlp_tasks
lbl = 'zip_creation'
zip_creation_jobs.append(self.addTask(command=cmd,
dependencies=deps,
label=lbl))
task = self.addTask(command=cmd, dependencies=deps, label=lbl)
zip_creation_tasks.append(task)
def collect_jobs(input_dir, output_dir):
@ -136,7 +150,7 @@ def collect_jobs(input_dir, output_dir):
if os.path.isdir(os.path.join(input_dir, file)):
jobs += collect_jobs(os.path.join(input_dir, file),
os.path.join(output_dir, file))
elif file.endswith('.txt'):
elif file.lower().endswith('.txt'):
jobs.append(NLPPipelineJob(os.path.join(input_dir, file),
os.path.join(output_dir, file)))
return jobs
@ -144,9 +158,9 @@ def collect_jobs(input_dir, output_dir):
def main():
args = parse_args()
jobs = collect_jobs(args.input_directory, args.output_directory)
nlp_pipeline = NLPPipeline(args.check_encoding, jobs, args.language,
args.n_cores, args.output_directory, args.zip)
nlp_pipeline = NLPPipeline(args.input_directory, args.language,
args.output_directory, args.check_encoding,
args.n_cores, args.zip)
retval = nlp_pipeline.run(
dataDirRoot=(args.log_dir or args.output_directory),
nCores=args.n_cores

View File

@ -4,29 +4,28 @@
from argparse import ArgumentParser
from xml.sax.saxutils import escape
import chardet
import hashlib
import os
import spacy
import textwrap
import hashlib
SPACY_MODELS = {'de': 'de_core_news_sm',
'el': 'el_core_news_sm',
'en': 'en_core_web_sm',
'es': 'es_core_news_sm',
'fr': 'fr_core_news_sm',
'it': 'it_core_news_sm',
'nl': 'nl_core_news_sm',
'pt': 'pt_core_news_sm'}
SPACY_MODELS = {'de': 'de_core_news_lg',
'el': 'el_core_news_lg',
'en': 'en_core_web_lg',
'es': 'es_core_news_lg',
'fr': 'fr_core_news_lg',
'it': 'it_core_news_lg',
'nl': 'nl_core_news_lg',
'pt': 'pt_core_news_lg'}
SPACY_MODELS_VERSION = os.environ.get('SPACY_MODELS_VERSION')
SPACY_VERSION = os.environ.get('SPACY_VERSION')
# Parse the given arguments
parser = ArgumentParser(description=('Tag a text file with spaCy and save it '
'as a verticalized text file.'))
parser.add_argument('-i', '--input', metavar='txt-sourcefile', required=True)
parser.add_argument('-o', '--output', metavar='vrt-destfile', required=True)
parser.add_argument('-l', '--language',
choices=SPACY_MODELS.keys(),
required=True)
parser.add_argument('-l', '--language', choices=SPACY_MODELS.keys(), required=True) # noqa
parser.add_argument('--check-encoding', action='store_true')
args = parser.parse_args()
@ -43,10 +42,10 @@ else:
# hashing in chunks to avoid full RAM with huge files.
with open(args.input, 'rb') as input_file:
md5_hash = hashlib.md5()
for chunk in iter(lambda: input_file.read(128 * md5_hash.block_size), b''):
md5_hash.update(chunk)
md5_hash = md5_hash.hexdigest()
source_md5 = hashlib.md5()
for chunk in iter(lambda: input_file.read(128 * source_md5.block_size), b''):
source_md5.update(chunk)
source_md5 = source_md5.hexdigest()
# Load the text contents from the input file
with open(args.input, encoding=encoding) as input_file:
@ -60,7 +59,8 @@ with open(args.input, encoding=encoding) as input_file:
# Setup the spaCy toolkit by loading the chosen language model
nlp = spacy.load(SPACY_MODELS[args.language])
model = SPACY_MODELS[args.language]
nlp = spacy.load(model)
# Create the output file in verticalized text format
@ -70,11 +70,9 @@ output_file_stand_off_filename = args.output.replace('.vrt', '.stand-off.vrt')
common_xml = ('<?xml version="1.0" encoding="UTF-8" standalone="yes"?>\n'
+ '<corpus>\n'
+ '<text>\n'
+ '<nlp name="spaCy"\n'
+ ' version="{}"\n'.format(spacy.__version__)
+ ' model="{}"\n'.format(SPACY_MODELS[args.language])
+ ' model_version="{}"\n'.format(nlp.meta['version'])
+ ' md5_hash_of_input="{}" />\n'.format(md5_hash))
+ '<nlp name="spaCy:{}"\n'.format(SPACY_VERSION)
+ ' model="{}:{}"\n'.format(model, SPACY_MODELS_VERSION)
+ ' source-md5="{}" />\n'.format(source_md5))
with open(output_file_original_filename, 'w+') as output_file_original, \
open(output_file_stand_off_filename, 'w+') as output_file_stand_off: