Initial commit

This commit is contained in:
Patrick Jentsch 2019-02-06 16:58:17 +01:00
commit 2a0662bccc
3 changed files with 218 additions and 0 deletions

42
Dockerfile Normal file
View File

@ -0,0 +1,42 @@
FROM debian:stretch
MAINTAINER Patrick Jentsch <p.jentsch@uni-bielefeld.de>
ENV LANG=C.UTF-8
RUN apt-get update && \
apt-get install -y --no-install-recommends \
build-essential \
ca-certificates \
python2.7 \
python3 \
python3-dev \
python3-pip \
python3-setuptools \
wget
WORKDIR /root
# Install pyFlow
ENV PYFLOW_VERSION 1.1.20
RUN wget -nv https://github.com/Illumina/pyflow/releases/download/v"$PYFLOW_VERSION"/pyflow-"$PYFLOW_VERSION".tar.gz && \
tar -xzf pyflow-"$PYFLOW_VERSION".tar.gz && \
rm pyflow-"$PYFLOW_VERSION".tar.gz && \
cd pyflow-"$PYFLOW_VERSION" && \
python2.7 setup.py build install && \
cd ..
# Install spaCy
RUN pip3 install wheel && pip3 install -U spacy && \
python3 -m spacy download de && \
python3 -m spacy download en && \
python3 -m spacy download es && \
python3 -m spacy download fr && \
python3 -m spacy download pt
RUN mkdir files_for_nlp files_from_nlp
COPY nlp /usr/local/bin
COPY spacy_nlp /usr/local/bin
CMD ["/bin/bash"]

117
nlp Executable file
View File

@ -0,0 +1,117 @@
#!/usr/bin/env python2.7
# coding=utf-8
"""
nlp
Usage: For usage instructions run with option --help
Author: Patrick Jentsch <p.jentsch@uni-bielefeld.de>
"""
import argparse
import multiprocessing
import os
import sys
from pyflow import WorkflowRunner
def parse_arguments():
parser = argparse.ArgumentParser(
"Performs NLP of documents utilizing spaCy. \
Output is .vrt."
)
parser.add_argument("-i",
dest="inputDir",
help="Input directory.",
required=True)
parser.add_argument("-l",
dest='lang',
help="Language for NLP",
required=True)
parser.add_argument("-o",
dest="outputDir",
help="Output directory.",
required=True)
parser.add_argument("--nCores",
default=multiprocessing.cpu_count(),
dest="nCores",
help="Total number of cores available.",
required=False,
type=int)
return parser.parse_args()
class NLPWorkflow(WorkflowRunner):
def __init__(self, jobs, lang, nCores):
self.jobs = jobs
self.lang = lang
self.nCores = nCores
def workflow(self):
###
# Task "mkdir_job": create output directories
# Dependencies: None
###
mkdir_jobs = []
mkdir_job_number = 0
for job in self.jobs:
mkdir_job_number += 1
cmd = 'mkdir -p "%s"' % (
job["output_dir"]
)
mkdir_jobs.append(self.addTask(label="mkdir_job_-_%i" % (mkdir_job_number), command=cmd))
###
# Task "spacy_nlp_job": perform NLP
# Dependencies: mkdir_jobs
###
self.waitForTasks()
nlp_jobs = []
nlp_job_number = 0
for job in self.jobs:
nlp_job_number += 1
cmd = 'spacy_nlp -i "%s" -o "%s" -l "%s"' % (
job["path"],
os.path.join(job["output_dir"], os.path.basename(job["path"]).rsplit(".", 1)[0] + ".vrt"),
self.lang
)
nlp_jobs.append(self.addTask(label="nlp_job_-_%i" % (nlp_job_number), command=cmd, dependencies=mkdir_jobs))
def analyze_jobs(inputDir, outputDir, level=1):
jobs = []
if level > 2:
return jobs
for file in os.listdir(inputDir):
if os.path.isdir(os.path.join(inputDir, file)):
jobs += analyze_jobs(
os.path.join(inputDir, file),
os.path.join(outputDir, file),
level + 1
)
elif file.endswith(".txt"):
jobs.append({"path": os.path.join(inputDir, file), "output_dir": os.path.join(outputDir, file.rsplit(".", 1)[0])})
return jobs
def main():
args = parse_arguments()
wflow = NLPWorkflow(
analyze_jobs(args.inputDir, args.outputDir),
args.lang,
args.nCores
)
retval = wflow.run(nCores=args.nCores)
sys.exit(retval)
if __name__ == "__main__":
main()

59
spacy_nlp Executable file
View File

@ -0,0 +1,59 @@
#!/usr/bin/env python3
# coding=utf-8
import argparse
import os
import spacy
parser = argparse.ArgumentParser(description="Tag a .txt file with spaCy and \
save it in .vrt format")
parser.add_argument("-i",
dest="input",
help="Input file.",
required=True)
parser.add_argument("-l",
choices=["de", "en", "es", "fr", "pt"],
dest="lang",
help="Language for tagging",
required=True)
parser.add_argument("-o",
dest="output",
help="Output file.",
required=True)
args = parser.parse_args()
SPACY_MODELS = {"de": "de_core_news_sm", "en": "en_core_web_sm",
"es": "es_core_news_sm", "fr": "fr_core_news_sm",
"pt": "pt_core_news_sm"}
# Set the language model for spacy
nlp = spacy.load(SPACY_MODELS[args.lang])
# Read text from the input file
with open(args.input) as input_file:
text = input_file.read()
# Run spacy nlp over the text
doc = nlp(text)
# Create and open the output file
output_file = open(args.output, "w+")
output_file.write('<?xml version="1.0" encoding="UTF-8"?>\n<corpus>\n<text id="' + args.input.rsplit(".", 1)[0] + '">\n')
for sent in doc.sents:
output_file.write('<s>\n')
for token in sent:
# Skip whitespace tokens like "\n" or "\t"
if token.text.isspace():
continue
# Write all information in .vrt style to the output file
# text, lemma, simple_pos, pos, ner
output_file.write(token.text + "\t" + token.lemma_ + "\t"
+ token.pos_ + "\t" + token.tag_ + "\t"
+ (token.ent_type_ if token.ent_type_ != "" else "NULL") + "\n")
output_file.write('</s>\n')
output_file.write('</text>\n</corpus>')
output_file.close()